449 research outputs found

    High fidelity readout scheme for rare-earth solid state quantum computing

    Full text link
    We propose and analyze a high fidelity readout scheme for a single instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different species of qubit and readout ions, and it is shown that by allowing the closest qubit ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the expected quantum fidelity of a CNOT gate in these solid state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believed are experimentally feasible with current technology, and which can be simultaneously realized.Comment: 7 pages, 5 figure

    Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Get PDF
    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J. Phys.: Cond. Mat

    Protein Localization with Flexible DNA or RNA

    Get PDF
    Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty

    Get PDF
    Copy number variations (CNV) and allelic imbalance in tumor tissue can show strong segmentation. Their graphical presentation can be enhanced by appropriate smoothing. Existing signal and scatterplot smoothers do not respect segmentation well. We present novel algorithms that use a penalty on the norm of differences of neighboring values. Visualization is our main goal, but we compare classification performance to that of VEGA

    Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thyroid adenoma associated (THADA) </it>has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify <it>THADA </it>gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR.</p> <p>Methods</p> <p>For the analysis <it>THADA </it>and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, <it>NIS </it>(<it>sodium-iodide symporter</it>) gene expression was measured on 34 of the pathological thyroid samples.</p> <p>Results</p> <p>Results illustrated that <it>THADA </it>expression in normal thyroid tissue was significantly higher (<it>p </it>< 0.0001, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors (<it>p </it>< 0.001, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors (<it>p </it>< 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors <it>THADA </it>mRNA expression was found to be inversely correlated with <it>HMGA2 </it>mRNA. <it>HMGA2 </it>expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between <it>THADA </it>and <it>NIS </it>has also been found in thyroid normal tissue and malignant tumors.</p> <p>Conclusions</p> <p>The results suggest <it>THADA </it>being a marker of dedifferentiation of thyroid tissue.</p

    Gene Variants in the Novel Type 2 Diabetes Loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B Affect Different Aspects of Pancreatic β-Cell Function

    Get PDF
    OBJECTIVE - Recently, results from a meta-analysis of genome-wide association studies have yielded a number of novel type 2 diabetes loci. However, conflicting results have been published regarding their effects on insulin secretion and insulin sensitivity. In this study we used hyperglycemic clamps with three different stimuli to test associations between these novel loci and various measures of β-cell function. RESEARCH DESIGN AND METHODS - For this study, 336 participants, 180 normal glucose tolerant and 156 impaired glucose tolerant, underwent a 2-h hyperglycemic clamp. In a subset we also assessed the response to glucagon-like peptide (GLP)-1 and arginine during an extended clamp (n = 123). All subjects were genotyped for gene variants in JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA, ADAMTS9, NOTCH2/ADAMS30, DCD, VEGFA, BCL11A, HNF1B, WFS1, and MTNR1B. RESULTS - Gene variants in CDC123/CAMK1D, ADAMTS9, BCL11A, and MTNR1B affected various aspects of the insulin response to glucose (all P < 6.9 × 10-3). The THADA gene variant was associated with lower β-cell response to GLP-1 and arginine (both P < 1.6 × 1

    Health-related quality of life following a clinical weight loss intervention among overweight and obese adults: intervention and 24 month follow-up effects

    Get PDF
    BACKGROUND: Despite a growing literature on the efficacy of behavioral weight loss interventions, we still know relatively little about the long terms effects they have on HRQL. Therefore, we conducted a study to investigate the immediate post-intervention (6 months) and long-term (12 and 24 months) effects of clinically based weight management programs on HRQL. METHODS: We conducted a randomized clinical trial in which all participants completed a 6 month clinical weight loss program and were randomized into two 6-month extended care groups. Participants then returned at 12 and 24 months for follow-up assessments. A total of 144 individuals (78% women, M age = 50.2 (9.2) yrs, M BMI = 32.5 (3.8) kg/m(2)) completed the 6 month intervention and 104 returned at 24 months. Primary outcomes of weight and HRQL using the SF-36 were analyzed using multivariate repeated measures analyses. RESULTS: There was complete data on 91 participants through the 24 months of the study. At baseline the participants scored lower than U.S. age-specific population norms for bodily pain, vitality, and mental health. At the completion of the 6 month clinical intervention there were increases in the physical and mental composite measures as well as physical functioning, general health, vitality, and mental health subscales of the SF-36. Despite some weight regain, the improvements in the mental composite scale as well as the physical functioning, vitality, and mental health subscales were maintained at 24 months. There were no significant main effects or interactions by extended care treatment group or weight loss group (whether or not they maintained 5% loss at 24 months). CONCLUSION: A clinical weight management program focused on behavior change was successful in improving several factors of HRQL at the completion of the program and many of those improvements were maintained at 24 months. Maintaining a significant weight loss (> 5%) was not necessary to have and maintain improvements in HRQL

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes
    corecore