1,465 research outputs found

    Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    Get PDF
    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program

    Optical properties of β′-CoAl

    Get PDF
    The optical absorptance of β′-CoAl in the (0.1-2.5)-eV region was measured and analyzed by the Kramers-Kronig method. The optical conductivity shows interband features beginning below 0.1 eV, with several structures below 2 eV. These structures agree with those calculated from the energy bands of Moruzzi, Williams, and Gelatt. The experimentally observed systematics in CoAl and NiAl confirm our previous interpretation of the spectra of β′-NiAl, and disagree with other experimental and theoretical attempts to understand the optical properties of these compounds

    Optical properties of TiCx (0.64≤x≤0.90) from 0.1 to 30 eV

    Get PDF
    The stoichiometry-dependent optical properties of bulk samples of TiCx have been determined for four samples in the range 0.64≤x≤0.90. Reflectance and absorptance data taken in the range 0.1-30 eV have been Kramers-Kronig analyzed to obtain the dielectric function and related functions. Interband absorption begins at 0.1 eV or less. The observed interband transitions are interpreted on the basis of existing energy-band calculations. Comparison of optical structure with joint-density-of-states calculations shows that the rigid-band model cannot be applied strictly to explain the x-dependent structure, especially in the 5-10 eV region. The electron-energy-loss functions exhibit two peaks, one near the free-electron plasmon energy and one near 10 eV, both peaks shifting to higher energy as x increases

    Optical properties and electronic structure of β′−NiAl

    Get PDF
    The optical constants and their temperature derivatives have been determined for β′−NiAl from absorption and thermoreflectance measurements in the energy range of 0.2-4.4 eV. The results are interpreted using the self-consistent energy bands of Moruzzi, Williams, and Gelatt. By comparing a calculated joint density of states with ε2, the imaginary part of the dielectric function, good overall agreement is found between theory and experiment. In contrast to earlier analyses, it is found that the 2.5-eV peak in ε2 is primarily due to direct interband transitions terminating near the Fermi surface. This new interpretation of the 2.5-eV feature is discussed in relation to previously reported concentration effects and the rigid-band model

    Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)

    Get PDF
    Individual micron-sized solid particles from a Salamols pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle’s travel from inhaler to lun

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    U and Sr Isotopes in Ground Water and Calcite, Yucca Mountain, Nevada: Evidence Against Upwelling Water

    Full text link

    Quantum Electrodynamics of the Helium Atom

    Full text link
    Using singlet S states of the helium atom as an example, I describe precise calculation of energy levels in few-electron atoms. In particular, a complete set of effective operators is derived which generates O(m*alpha^6) relativistic and radiative corrections to the Schr"odinger energy. Average values of these operators can be calculated using a variational Schr"odinger wave function.Comment: 23 pages, revte

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+e−e^+e^- annihilation ratio Re+e−R_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review
    • …
    corecore