3,886 research outputs found

    Methods for Combining Payload Parameter Variations with Input Environment

    Get PDF
    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented

    Effect of damping on excitability of high-order normal modes

    Get PDF
    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs

    The effects of localized damping on structural response

    Get PDF
    The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs

    Electromagnetic Transition Strengths in Heavy Nuclei

    Full text link
    We calculate reduced B(E2) and B(M1) electromagnetic transition strengths within and between K-bands in support of a recently proposed model for the structure of heavy nuclei. Previously, only spectra and a rough indication of the largest B(E2) strengths were reported. The present more detailed calculations should aid the experimental identification of the predicted 0+0^+, 1+1^+ and 2+2^+ bands and, in particular, act to confirm or refute the suggestion that the model 0+0^+ and 2+2^+ bands correspond to the well known and widespread beta and gamma bands. Furthermore they pinpoint transitions which can indicate the presence of a so far elusive 1+1^+ band by feeding relatively strongly into or out of it. Some of these transitions may already have been measured in 230^{230}Th, 232^{232}Th and 238^{238}U.Comment: 10 pages, 1 Figure, submitted to Physical Review

    Influence of spin waves on transport through a quantum-dot spin valve

    Full text link
    We study the influence of spin waves on transport through a single-level quantum dot weakly coupled to ferromagnetic electrodes with noncollinear magnetizations. Side peaks appear in the differential conductance due to emission and absorption of spin waves. We, furthermore, investigate the nonequilibrium magnon distributions generated in the source and drain lead. In addition, we show how magnon-assisted tunneling can generate a fullly spin-polarized current without an applied transport voltage. We discuss the influence of spin waves on the current noise. Finally, we show how the magnonic contributions to the exchange field can be detected in the finite-frequency Fano factor.Comment: published version, 15 pages, 10 figure

    Inter-calibration of HY-1B/COCTS thermal infrared channels with MetOp-A/IASI

    Get PDF
    The Chinese Ocean Color and Temperature Scanner (COCTS) on board the Haiyang-1B (HY-1B) satellite has two thermal infrared channels (9 and 10) centred near 11 μm and 12 μm respectively which are intended for sea surface temperature (SST) observations. In order to improve the accuracy of COCTS SSTs, the inter-calibration of COCTS thermal infrared radiance is carried out. The Infrared Atmospheric Sounding Interferometer (IASI) on board MetOp-A satellite is used as inter-calibration reference owing to its hyperspectral nature and high-quality measurements. The inter-calibration of HY-1B COCTS thermal infrared radiances with IASI is undertaken for data from the period 2009 to 2011 located in the northwest Pacific. Collocations of COCTS radiance with IASI are identified within a temporal window of 30 minutes, a spatial window of 0.12° and an atmospheric path tolerance of 3%. Matched IASI spectra are convolved with the COCTS spectral response functions, while COCTS pixels within the footprint of each IASI pixel are spatially averaged, thus creating matched IASI-COCTS radiance pairs that should agree well in the absence of satellite biases. The radiances of COCTS 11 and 12 μm channel are lower than IASI with relatively large biases, and a strong dependence of difference on radiance in the case of 11 μm channel. We use linear robust regression for different four detectors of COCTS separately to obtain the inter-calibration coefficients to correct the COCTS radiance. After correction, the mean values of COCTS 11 and 12 μm channel minus IASI radiance are -0.02 mW m-2 cm sr-1 and -0.01 mW m-2 cm sr-1 respectively, with corresponding standard deviations of 0.51 mW m-2 cm sr-1 and 0.57 mW m-2 cm sr-1. Striped noise is present in COCTS original radiance imagery associated with inconsistency between four detectors, and inter-calibration is shown to reduce, although not eliminate, the striping. The calibration accuracy of COCTS is improved after inter-calibration, that is potentially useful for improving COCTS SST accuracy in the future

    Recent results in the decoding of Algebraic geometry codes

    Get PDF
    Objectives: The aim of this study was to examine the relationships between perceived teacher autonomy support versus control and students’ life skills development in PE, and whether students’ basic need satisfaction and frustration mediated these relationships. Design: Cross-sectional study. Method: English and Irish students (N = 407, Mage = 13.71, SD = 1.23) completed measures assessing perceived autonomy-supportive and controlling teaching, basic need satisfaction and frustration (autonomy, competence, and relatedness), and life skills development in PE (teamwork, goal setting, social skills, problem solving and decision making, emotional skills, leadership, time management, and interpersonal communication). Results: On the bright side of Self-Determination Theory (SDT), correlations revealed that perceived teacher autonomy support was positively associated with students’ basic need satisfaction and life skills development in PE. On the dark side of SDT, perceived controlling teaching was positively related to students’ basic need frustration, but not significantly related to their life skills development. Mediational analyses revealed that autonomy and relatedness satisfaction mediated the relationships between perceived teacher autonomy support and students’ development of all eight life skills. Competence satisfaction mediated the relationships between perceived teacher autonomy support and students’ development of teamwork, goal setting, and leadership skills. Conclusions: Our findings indicate that satisfaction of the needs for autonomy, competence, and relatedness are important mechanisms that in part explain the relationships between perceived teacher autonomy support and life skills development in PE. Therefore, teachers may look to promote students’ perceptions of an autonomy-supportive climate that satisfies their three basic needs and helps to develop their life skills

    Electron Quasiparticles Drive the Superconductor-to-Insulator Transition in Homogeneously Disordered Thin Films

    Full text link
    Transport data on Bi, MoGe, and PbBi/Ge homogeneously-disordered thin films demonstrate that the critical resistivity, RcR_c, at the nominal insulator-superconductor transition is linearly proportional to the normal sheet resistance, RNR_N. In addition, the critical magnetic field scales linearly with the superconducting energy gap and is well-approximated by Hc2H_{c2}. Because RNR_N is determined at high temperatures and Hc2H_{c2} is the pair-breaking field, the two immediate consequences are: 1) electron-quasiparticles populate the insulating side of the transition and 2) standard phase-only models are incapable of describing the destruction of the superconducting state. As gapless electronic excitations populate the insulating state, the universality class is no longer the 3D XY model. The lack of a unique critical resistance in homogeneously disordered films can be understood in this context. In light of the recent experiments which observe an intervening metallic state separating the insulator from the superconductor in homogeneously disordered MoGe thin films, we argue that the two transitions that accompany the destruction of superconductivity are 1) superconductor to Bose metal in which phase coherence is lost and 2) Bose metal to localized electron insulator via pair-breaking.Comment: This article is included in the Festschrift for Prof. Michael Pollak on occasion of his 75th birthda
    • …
    corecore