3,886 research outputs found
Methods for Combining Payload Parameter Variations with Input Environment
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented
Effect of damping on excitability of high-order normal modes
The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs
The effects of localized damping on structural response
The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs
Recommended from our members
Harmonization of space-borne infra-red sensors measuring sea surface temperature
Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals
are commonly combined into gridded SST analyses and climate data records (CDRs). Differential
biases between SSTs from different sensors cause errors in such products, including feature artefacts.
We introduce a new method for reducing differential biases across the SST constellation, by reconciling
the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the
Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature
Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer
(AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a
range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from
the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals
by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined,
including BT bias corrections and observation error covariance matrices as functions of water-vapor
path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor
SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable
across the reference-sensor gap. We discuss that this method is suitable to improve consistency across
the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future
SST CDRs, as well as having application to other domains of remote sensing
Electromagnetic Transition Strengths in Heavy Nuclei
We calculate reduced B(E2) and B(M1) electromagnetic transition strengths
within and between K-bands in support of a recently proposed model for the
structure of heavy nuclei. Previously, only spectra and a rough indication of
the largest B(E2) strengths were reported. The present more detailed
calculations should aid the experimental identification of the predicted ,
and bands and, in particular, act to confirm or refute the
suggestion that the model and bands correspond to the well known
and widespread beta and gamma bands. Furthermore they pinpoint transitions
which can indicate the presence of a so far elusive band by feeding
relatively strongly into or out of it. Some of these transitions may already
have been measured in Th, Th and U.Comment: 10 pages, 1 Figure, submitted to Physical Review
Influence of spin waves on transport through a quantum-dot spin valve
We study the influence of spin waves on transport through a single-level
quantum dot weakly coupled to ferromagnetic electrodes with noncollinear
magnetizations. Side peaks appear in the differential conductance due to
emission and absorption of spin waves. We, furthermore, investigate the
nonequilibrium magnon distributions generated in the source and drain lead. In
addition, we show how magnon-assisted tunneling can generate a fullly
spin-polarized current without an applied transport voltage. We discuss the
influence of spin waves on the current noise. Finally, we show how the magnonic
contributions to the exchange field can be detected in the finite-frequency
Fano factor.Comment: published version, 15 pages, 10 figure
Recommended from our members
Cloud clearing techniques over land for land surface temperature retrieval from the Advanced Along Track Scanning Radiometer
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014)
Inter-calibration of HY-1B/COCTS thermal infrared channels with MetOp-A/IASI
The Chinese Ocean Color and Temperature Scanner (COCTS) on board the Haiyang-1B (HY-1B) satellite has two thermal infrared channels (9 and 10) centred near 11 μm and 12 μm respectively which are intended for sea surface temperature (SST) observations. In order to improve the accuracy of COCTS SSTs, the inter-calibration of COCTS thermal infrared radiance is carried out. The Infrared Atmospheric Sounding Interferometer (IASI) on board MetOp-A satellite is used as inter-calibration reference owing to its hyperspectral nature and high-quality measurements. The inter-calibration of HY-1B COCTS thermal infrared radiances with IASI is undertaken for data from the period 2009 to 2011 located in the northwest Pacific. Collocations of COCTS radiance with IASI are identified within a temporal window of 30 minutes, a spatial window of 0.12° and an atmospheric path tolerance of 3%. Matched IASI spectra are convolved with the COCTS spectral response functions, while COCTS pixels within the footprint of each IASI pixel are spatially averaged, thus creating matched IASI-COCTS radiance pairs that should agree well in the absence of satellite biases. The radiances of COCTS 11 and 12 μm channel are lower than IASI with relatively large biases, and a strong dependence of difference on radiance in the case of 11 μm channel. We use linear robust regression for different four detectors of COCTS separately to obtain the inter-calibration coefficients to correct the COCTS radiance. After correction, the mean values of COCTS 11 and 12 μm channel minus IASI radiance are -0.02 mW m-2 cm sr-1 and -0.01 mW m-2 cm sr-1 respectively, with corresponding standard deviations of 0.51 mW m-2 cm sr-1 and 0.57 mW m-2 cm sr-1. Striped noise is present in COCTS original radiance imagery associated with inconsistency between four detectors, and inter-calibration is shown to reduce, although not eliminate, the striping. The calibration accuracy of COCTS is improved after inter-calibration, that is potentially useful for improving COCTS SST accuracy in the future
Recent results in the decoding of Algebraic geometry codes
Objectives: The aim of this study was to examine the relationships between perceived teacher
autonomy support versus control and students’ life skills development in PE, and whether students’ basic need satisfaction and frustration mediated these relationships.
Design: Cross-sectional study.
Method: English and Irish students (N = 407, Mage = 13.71, SD = 1.23) completed measures assessing perceived autonomy-supportive and controlling teaching, basic need satisfaction and frustration (autonomy, competence, and relatedness), and life skills development in PE (teamwork, goal setting, social skills, problem solving and decision making, emotional skills, leadership, time management, and interpersonal communication).
Results: On the bright side of Self-Determination Theory (SDT), correlations revealed that perceived teacher autonomy support was positively associated with students’ basic need satisfaction and life skills development in PE. On the dark side of SDT, perceived controlling teaching was positively related to students’ basic need frustration, but not significantly related to their life skills development. Mediational analyses revealed that autonomy and relatedness satisfaction mediated the relationships between perceived teacher autonomy support and students’ development of all eight life skills. Competence satisfaction mediated the relationships between perceived teacher autonomy support and students’ development of teamwork, goal setting, and leadership skills.
Conclusions: Our findings indicate that satisfaction of the needs for autonomy, competence, and relatedness are important mechanisms that in part explain the relationships between perceived teacher autonomy support and life skills development in PE. Therefore, teachers may look to promote students’ perceptions of an autonomy-supportive climate that satisfies their three basic needs and helps to develop their life skills
Electron Quasiparticles Drive the Superconductor-to-Insulator Transition in Homogeneously Disordered Thin Films
Transport data on Bi, MoGe, and PbBi/Ge homogeneously-disordered thin films
demonstrate that the critical resistivity, , at the nominal
insulator-superconductor transition is linearly proportional to the normal
sheet resistance, . In addition, the critical magnetic field scales
linearly with the superconducting energy gap and is well-approximated by
. Because is determined at high temperatures and is the
pair-breaking field, the two immediate consequences are: 1)
electron-quasiparticles populate the insulating side of the transition and 2)
standard phase-only models are incapable of describing the destruction of the
superconducting state. As gapless electronic excitations populate the
insulating state, the universality class is no longer the 3D XY model. The lack
of a unique critical resistance in homogeneously disordered films can be
understood in this context. In light of the recent experiments which observe an
intervening metallic state separating the insulator from the superconductor in
homogeneously disordered MoGe thin films, we argue that the two transitions
that accompany the destruction of superconductivity are 1) superconductor to
Bose metal in which phase coherence is lost and 2) Bose metal to localized
electron insulator via pair-breaking.Comment: This article is included in the Festschrift for Prof. Michael Pollak
on occasion of his 75th birthda
- …