34,299 research outputs found
A Laplace Transform Method for Molecular Mass Distribution Calculation from Rheometric Data
Polydisperse linear polymer melts can be microscopically described by the
tube model and fractal reptation dynamics, while on the macroscopic side the
generalized Maxwell model is capable of correctly displaying most of the
rheological behavior. In this paper, a Laplace transform method is derived and
different macroscopic starting points for molecular mass distribution
calculation are compared to a classical light scattering evaluation. The
underlying assumptions comprise the modern understanding on polymer dynamics in
entangled systems but can be stated in a mathematically generalized way. The
resulting method is very easy to use due to its mathematical structure and it
is capable of calculating multimodal molecular mass distributions of linear
polymer melts
Spin-dependent recombination in Czochralski silicon containing oxide precipitates
Electrically detected magnetic resonance is used to identify recombination
centers in a set of Czochralski grown silicon samples processed to contain
strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~
7e10 cm-3). Measurements reveal that photo-excited charge carriers recombine
through Pb0 and Pb1 dangling bonds and comparison to precipitate-free material
indicates that these are present at both the sample surface and the oxide
precipitates. The electronic recombination rates vary approximately linearly
with precipitate density. Additional resonance lines arising from iron-boron
and interstitial iron are observed and discussed. Our observations are
inconsistent with bolometric heating and interpreted in terms of spin-dependent
recombination. Electrically detected magnetic resonance is thus a very powerful
and sensitive spectroscopic technique to selectively probe recombination
centers in modern photovoltaic device materials.Comment: 8 pages, 8 figure
Measurements in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow. Part 2: Laser-Doppler Velocity Measurements
A description of both the mean and the fluctuating components of the flow, and of the Reynolds stress as observed using a dual forward scattering laser-Doppler velocimeter is presented. A detailed description of the instrument and of the data analysis techniques were included in order to fully document the data. A detailed comparison was made between the laser-Doppler results and those presented in Part 1, and an assessment was made of the ability of the laser-Doppler velocimeter to measure the details of the flows involved
Recommended from our members
Role of government policy in nutrition-barriers to and opportunities for healthier eating
Polaronic slowing of fermionic impurities in lattice Bose-Fermi mixtures
We generalize the application of small polaron theory to ultracold gases of
Ref. [\onlinecite{jaksch_njp1}] to the case of Bose-Fermi mixtures, where both
components are loaded into an optical lattice. In a suitable range of
parameters, the mixture can be described within a Bogoliubov approach in the
presence of fermionic (dynamic) impurities and an effective description in
terms of polarons applies. In the dilute limit of the slow impurity regime, the
hopping of fermionic particles is exponentially renormalized due to polaron
formation, regardless of the sign of the Bose-Fermi interaction. This should
lead to clear experimental signatures of polaronic effects, once the regime of
interest is reached. The validity of our approach is analyzed in the light of
currently available experiments. We provide results for the hopping
renormalization factor for different values of temperature, density and
Bose-Fermi interaction for three-dimensional
mixtures in optical lattice.Comment: 13 pages, 5 figure
- …