403 research outputs found

    Quasi-two-dimensional Fermi surfaces of the heavy-fermion superconductor Ce2_2PdIn8_8

    Full text link
    We report low-temperature de Haas-van Alphen (dHvA) effect measurements in magnetic fields up to 35 T of the heavy-fermion superconductor Ce2_2PdIn8_8. The comparison of the experimental results with band-structure calculations implies that the 4ff electrons are itinerant rather than localized. The cyclotron masses estimated at high field are only moderately enhanced, 8 and 14 m0m_0, but are substantially larger than the corresponding band masses. The observed angular dependence of the dHvA frequencies suggests quasi-two-dimensional Fermi surfaces in agreement with band-structure calculations. However, the deviation from ideal two dimensionality is larger than in CeCoIn5_5, with which Ce2_2PdIn8_8 bears a lot of similarities. This subtle distinction accounts for the different superconducting critical temperatures of the two compounds.Comment: accepted to Phys. Rev.

    Anomalous superfluid density in quantum critical superconductors

    Get PDF
    When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical' superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature TcT_c often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below TcT_c is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected TT-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k\bm{k} close to the nodes in the superconducting energy gap Δ(k)\Delta(\bm{k}). We suggest that such `nodal criticality' may have an impact on low-energy properties of quantum critical superconductors.Comment: Main text (5 pages, 3 figures) + Supporting Information (3 pages, 4 figures). Published in PNAS Early Edition on February 12, 201

    Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Full text link
    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab-initio band structure calculations performed within the density functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74, Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b = 9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data revealed the presence of well localized magnetic moments of trivalent cerium ions. All physical properties were found to be highly anisotropic over the whole temperature range studied, and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt = 4.48(1) K manifest themselves as distinct anomalies in the temperature characteristics of all investigated physical properties and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b-axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2, similar to that recently reported for an isostructural compound CeIr3Si2. The electronic band structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well reproduced the experimental XPS valence band spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page

    Influence of carbon on spin reorientation processes in Er_{2-x}R_{x}Fe_{14}C (R = Gd, Pr) - Mössbauer and magnetometric studies

    Get PDF
    The Er2xRxFe14CEr_{2-x}R_{x}Fe_{14}C (R=Gd, Pr) polycrystalline compounds have been synthesized and investigated with 57Fe\text{}^{57}Fe Mössbauer spectroscopy and magnetic measurements. The spin reorientation phenomena were studied extensively by narrow step temperature scanning in the neighborhood of the spin reorientation temperature. Obtained Mössbauer spectra were analyzed using a procedure of simultaneous fitting and the transmission integral approach. Consistent description of Mössbauer spectra were obtained, temperature and composition dependencies of hyperfine interaction parameters and subspectra contributions were derived from fits and the transition temperatures were determined for all the compounds studied. Initial magnetization versus temperature measurements (in zero and non-zero external field) for Er2xGdxFe14CEr_{2-x}Gd_{x}Fe_{14}C compounds allowed to establish the temperature regions of reorientation, change of magnetization value during the transition process. The results obtained with different methods were analyzed and the spin arrangement diagrams were constructed. Data obtained for Er2xGdxFe14CEr_{2-x}Gd_{x}Fe_{14}C were compared with those for Er2xGdxFe14BEr_{2-x}Gd_{x}Fe_{14}B series

    Influence of carbon on spin reorientation processes in Er 2-xRxFe14C (R = Gd, Pr) - Mossbauer and magnetometric studies

    Get PDF
    The Er2¡xRxFe14C (R=Gd, Pr) polycrystalline compounds have been synthesized and investigated with 57Fe Mössbauer spectroscopy and magnetic measurements. The spin reorientation phenomena were studied extensively by narrow step temperature scanning in the neighborhood of the spin reorientation temperature. Obtained Mössbauer spectra were analyzed using a procedure of simultaneous fitting and the transmission integral approach. Consistent description of Mössbauer spectra were obtained, temperature and composition dependencies of hyperfine interaction parameters and subspectra contributions were derived from fits and the transition temperatures were determined for all the compounds studied. Initial magnetization versus temperature measurements (in zero and non-zero external field) for Er2¡xGdxFe14C compounds allowed to establish the temperature regions of reorientation, change of magnetization value during the transition process. The results obtained with different methods were analyzed and the spin arrangement diagrams were constructed. Data obtained for Er2¡xGdxFe14C were compared with those for Er2¡xGdxFe14B series

    The Importance of Being Profiled: Improving Drug Candidate Safety and Efficacy Using Ion Channel Profiling

    Get PDF
    Profiling of putative lead compounds against a representative panel of relevant enzymes, receptors, ion channels, and transporters is a pragmatic approach to establish a preliminary view of potential issues that might later hamper development. An early idea of which off-target activities must be minimized can save valuable time and money during the preclinical lead optimization phase if pivotal questions are asked beyond the usual profiling at hERG. The best data for critical evaluation of activity at ion channels is obtained using functional assays, since binding assays cannot detect all interactions and do not provide information on whether the interaction is that of an agonist, antagonist, or allosteric modulator. For ion channels present in human cardiac muscle, depending on the required throughput, manual-, or automated-patch-clamp methodologies can be easily used to evaluate compounds individually to accurately reveal any potential liabilities. The issue of expanding screening capacity against a cardiac panel has recently been addressed by developing a series of robust, high-throughput, cell-based counter-screening assays employing fluorescence-based readouts. Similar assay development approaches can be used to configure panels of efficacy assays that can be used to assess selectivity within a family of related ion channels, such as Nav1.X channels. This overview discusses the benefits of in vitro assays, specific decision points where profiling can be of immediate benefit, and highlights the development and validation of patch-clamp and fluorescence-based profiling assays for ion channels (for examples of fluorescence-based assays, see Bhave et al., 2010; and for high-throughput patch-clamp assays see Mathes, 2006; Schrøder et al., 2008)
    corecore