33 research outputs found

    Enhanced fluorescence from X-Ray line coincidence pumping

    Get PDF
    Many resonant photo-pumped X-ray laser schemes that use a strong pump line such as Ly-α or He-α to populate the upper laser state of a separate lasing material have been proposed over the last four decades but none have been demonstrated. As a first step to creating a photo-pumped X-ray laser we have decided to reinvestigate some of these schemes at the Orion laser facility with the goal to show enhanced fluorescence. In particular we look at using the Ly-α or He-α K lines to pump the 1s–3p and 4p transitions in H-like Cl and see fluorescence on the 4f–3d line at 65 Å and the 3d–2p line at 23 Å. Preliminary experiments are presented that show a modest enhancement. As an alternative we also look at enhancing the 2p–2s line in Ne-like Ge at 65 Å using the Ly-α Mg line to photo-pump the 2s–3p line of Ne-like Ge. Calculations are presented that suggest modest enhancements of 2.5

    Observation and characterization of laser-driven Phase Space Electron Holes

    Get PDF
    The direct observation and full characterization of a Phase Space Electron Hole (EH) generated by laser-matter interaction is presented. This structure has been detected via proton radiography during the interaction between an intense laser pulse (t=1ns temporally flat-top, I= 10^14W/cm^2) and a gold 26 micron thick hohlraum. This technique has allowed us the simultaneous detection of propagation velocity, potential and electron density spatial profile across the EH with fine spatial and temporal resolution providing an unprecedentedly detailed experimental characterization

    Observation of He-like satellite lines of the H-like potassium K XIX emission

    Get PDF
    We present measurements of the H-like potassium (K XIX) X-ray spectrum and its Helike (K XVIII) satellite lines, which are situated in the wavelength region between 3.34 and 3.39 Å, which has been of interest for the detection of dark matter. The measurements were taken with a high-resolution X-ray spectrometer from targets irradiated by a long-pulse (2 ns) beam from the Orion laser facility. We obtain experimental wavelength values of dielectronic recombination satellite lines and show that the ratio of the Lyα lines and their dielectronic satellite lines can be used to estimate the electron temperature, which in our case was about 1.5±0.3 keV

    Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime

    Get PDF
    In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 x 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 x 10(18) W/cm(2) and is in the 3 keV range

    Radiation burnthrough measurements to infer opacity at conditions close to the solar radiative zone–convective zone boundary

    Get PDF
    Recent measurements at the Sandia National Laboratory of the x-ray transmission of iron plasma have inferred opacities much higher than predicted by theory, which casts doubt on modeling of iron x-ray radiative opacity at conditions close to the solar convective zone-radiative zone boundary. An increased radiative opacity of the solar mixture, in particular iron, is a possible explanation for the disagreement in the position of the solar convection zone-radiative zone boundary as measured by helioseismology and predicted by modeling using the most recent photosphere analysis of the elemental composition. Here, we present data from radiation burnthrough experiments, which do not support a large increase in the opacity of iron at conditions close to the base of the solar convection zone and provide a constraint on the possible values of both the mean opacity and the opacity in the x-ray range of the Sandia experiments. The data agree with opacity values from current state-of-the-art opacity modeling using the CASSANDRA opacity code

    A proposal to measure iron opacity at conditions close to the solar convective zone-radiative zone boundary

    No full text
    A major problem in stellar modelling is the discrepancy between solar models and helioseismology data in the position of the convective zone-radiative zone boundary in the sun. This could be explained by a large uncertainty in the calculated opacity data and recent experimental data on iron using the Sandia National Laboratory Z facility have shown large differences, up to a factor of 4, between measurement and prediction at plasma conditions close to the convective zone-radiative zone boundary. This paper describes a proposal for a radiative burn-through experiment to be fielded on NIF to observe if a radiation wave transit through a Fe2O3 sample is consistent with the factor of 2–4 change in the iron opacity seen in the Z experiments. A target design and the diagnostic method are described. A detailed radiation-hydrodynamic model has been used to generate synthetic results and explore the sensitivities and experimental accuracy needed for the proposed measurement
    corecore