11,935 research outputs found

    Testing An Identification Algorithm for Extragalactic OB Associations Using a Galactic Sample

    Get PDF
    We have used a Galactic sample of OB stars and associations to test the performance of an automatic grouping algorithm designed to identify extragalactic OB associations. The algorithm identifies the known Galactic OB associations correctly when the search radius (78 pc) is defined by the observed stellar surface density. Galactic OB associations identified with a 78 pc search radius have diameters that are ∌\sim3 times larger than OB associations identified with a 22 pc search radius in M33. Applying the smaller search radius to the Galactic data matches both the sizes and the number of member stars between the two galaxies quite well. Thus, we argue that this and similar algorithms should be used with a constant physical search radius, rather than one which varies with the stellar surface density. Such an approach would allow the identification of differences in the giant molecular cloud populations and star formation efficiency under most circumstances.Comment: accepted to AJ; 16 pages, aas latex, 9 postscript figures; available at http://www.physics.mcmaster.ca/Wilson_Preprints/index.htm

    Polarization effects on the effective temperature of an ultracold electron source

    Get PDF
    The influence has been studied of the ionization laser polarization on the effective temperature of an ultracold electron source, which is based on near-threshold photoionization. This source is capable of producing both high-intensity and high-coherence electron pulses, with applications in for example electron diffraction experiments. For both nanosecond and femtosecond photoionization, a sinusoidal dependence of the temperature on polarization angle has been found. For most experimental conditions, the temperature is minimal when the polarization coincides with the direction of acceleration. However, surprisingly, for nanosecond ionization a regime exists when the temperature is minimal when the polarization is perpendicular to the acceleration direction. This shows that in order to create electron bunches with the highest transverse coherence length, it is important to control the polarization of the ionization laser. The general trends and magnitudes of the temperature measurements are described by a model, based on the analysis of classical electron trajectories; this model further deepens our understanding of the internal mechanisms during the photoionization process. Furthermore, for nanosecond ionization, charge oscillations as a function of laser polarization have been observed; for most situations the oscillation amplitude is small

    On the construction of hierarchic models

    Get PDF
    One of the main problems in the field of model-based diagnosis of technical systems today is finding the most useful model or models of the system being diagnosed. Often, a model showing the physical components and the connections between them is all that is available. As systems grow larger and larger, the run-time performance of diagnostic algorithms decreases considerably when using these detailed models. A solution to this problem is using a hierarchic model. This allows us to first diagnose the system using an abstract model, and then use this solution to guide the diagnostic process using a more detailed model. The main problem with this approach is acquiring the hierarchic model. We give a generic hierarchic diagnostic algorithm and show how the use of certain classes of hierarchic models can increase the performance of this algorithm. We then present linear time algorithms for the automatic construction of these hierarchic models, using the detailed model and extra information about cost of probing points and invertibility of components

    Effect of disorder on the conductance of a Cu atomic point contact

    Get PDF
    We present a systematic study of the effect of the disorder in copper point contacts. We show that peaks in the conductance histogram of copper point contacts shift upon addition of nickel impurities. The shift increases initially linerarly with the nickel concentration, thus confirming that it is due to disorder in the nanowire, in accordance with predictions. In general, this shift is modelled as a resistance R_s which is placed in series with the contact resistance R_c. However, we obtain different R_s values for the two peaks in the histogram, R_s being larger for the peak at higher conductance.Comment: 6 pages, 4 figure

    Time resolved spectroscopy of the post-AGB star HD56126

    Full text link
    We have investigated the report of Tamura and Takeuti that the Halpha line of the F-type post-AGB star HD56126 is variable on time scales of minutes. To this end, HD56126 was observed on two occasions with the William Herschel Telescope. Seventeen, respectively thirty spectra were taken within time span of 1.5 hours in order to detect any short term variations. We find that the Halpha line profile changed strongly over the two month interval, but no evidence is found for short term variability. The variability Tamura and Takeuti claim to find is probably due to the low signal-to-noise in their spectra.Comment: 6 pages plain latex includes 4 encapsulated poscript files, uses psfig.sty and mn.sty; 1994, Monthly Notices of the Royal Astronomical Society, 271, 61

    Infrared High-Resolution Spectroscopy of Post-AGB Circumstellar Disks. I. HR 4049 - The Winnowing Flow Observed?

    Get PDF
    High-resolution infrared spectroscopy in the 2.3-4.6 micron region is reported for the peculiar A supergiant, single-lined spectroscopic binary HR 4049. Lines from the CO fundamental and first overtone, OH fundamental, and several H2O vibration-rotation transitions have been observed in the near-infrared spectrum. The spectrum of HR 4049 appears principally in emission through the 3 and 4.6 micron region and in absorption in the 2 micron region. The 4.6 micron spectrum shows a rich 'forest' of emission lines. All the spectral lines observed in the 2.3-4.6 micron spectrum are shown to be circumbinary in origin. The presence of OH and H2O lines confirm the oxygen-rich nature of the circumbinary gas which is in contrast to the previously detected carbon-rich material. The emission and absorption line profiles show that the circumbinary gas is located in a thin, rotating layer near the dust disk. The properties of the dust and gas circumbinary disk and the spectroscopic orbit yield masses for the individual stars, M_AI~0.58 Msolar and M_MV~0.34 Msolar. Gas in the disk also has an outward flow with a velocity of ≳\gtrsim 1 km/s. The severe depletion of refractory elements but near-solar abundances of volatile elements observed in HR 4049 results from abundance winnowing. The separation of the volatiles from the grains in the disk and the subsequent accretion by the star are discussed. Contrary to prior reports, the HR 4049 carbon and oxygen isotopic abundances are typical AGB values: 12C/13C=6^{+9}_{-4} and 16O/17O>200.Comment: 42 pages, 14 figures, Accepted by Ap

    Cruise report hydro acoustic survey for blue whiting (Micromesistius poutassou) with R.V. Tridens, 17 March - 04 April 2008

    Get PDF
    This is the report of the Dutch part of the international North East Atlantic hydro acoustic survey for blue whiting. The survey is coordinated by ICES and has been executed annually. The purpose of the survey is to estimate the blue whiting stock of the North East Atlantic. The ICES uses this estimation is as a “tuning index” to assess the North East Atlantic blue whiting stock. The applied method was echo integration. By sailing transects over the survey area, the total acoustic cross-section can be calculated by surface area sampled. Trawling identified species composition of localized schools. The length composition of each species was determined. Blue whiting was examined on age and fecundity from which a split up stock structure was mad

    Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves

    Get PDF
    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second and third harmonic voltage response non locally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both Seebeck coefficient and resistivity.Comment: 4 pages, 4 figure
    • 

    corecore