266 research outputs found

    Sonoluminescence and collapse dynamics of multielectron bubbles in helium

    Full text link
    Multielectron bubbles (MEBs) differ from gas-filled bubbles in that it is the Coulomb repulsion of a nanometer thin layer of electrons that forces the bubble open rather than the pressure of an enclosed gas. We analyze the implosion of MEBs subjected to a pressure step, and find that despite the difference in the underlying processes the collapse dynamics is similar to that of gas-filled bubbles. When the MEB collapses, the electrons inside it undergo strong accelerations, leading to the emission of radiation. This type of sonoluminescence does not involve heating and ionisation of any gas inside the bubble. We investigate the conditions necessary to obtain sonoluminescence from multielectron bubbles and calculate the power spectrum of the emitted radiation.Comment: 6 figure

    Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    Get PDF
    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.Comment: latex, 5 pages, no figure

    Highly Stable, Water-Soluble CdSe/ZnS/CdS/ZnS Quantum Dots with Additional SiO2 shell

    Get PDF
    Quantum dots (QDs) are fluorescent nanocrystals extensively used today in research and applications. They attract much interest due to the high photostability and fluorescence quantum yields close to 100%. The best QDs are made by synthesis in organic media, and they have to be transferred into aqueous solutions if biomedical applications are concerned. An advanced method for rendering QDs water-soluble is to coat them with hydrophilic SiO2 -layer. However, growing a silica shell with a predetermined thickness is a problem, because uncertain values of the molar extinction coefficients (ε) of core/shell QDs made it impossible to calculate precise yields of the chemical reactions involved. Here we suggest an approach to solving this problem by constructing the structural models of per se and silica-coated QDs followed by measuring ε in a course of the QD synthesis, thus carrying out precise quantitative reactions. Proceeding in such a way, we prepared the CdSe/ZnS/CdS/ZnS QDs with the structure predicted by the model and coated by silica shell. Prepared QDs are characterized by a narrow size distribution and the same fluorescence parameters as the original QDs in the organic medium. Developed approach permitted efficient QDs water-solubilisation and preparation of stable nanoparticles for plethora of biomedical applications.     Keywords: Quantum dots, QD, silica shell, core-shel

    Microwave Absorption of Surface-State Electrons on Liquid 3^3He

    Full text link
    We have investigated the intersubband transitions of surface state electrons (SSE) on liquid 3^3He induced by microwave radiation at temperatures from 1.1 K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the density of 3^3He vapor atoms. This proportionality is explained well by Ando's theory, in which the linewidth is determined by the electron - vapor atom scattering. However, the linewidth is larger than the calculation by a factor of 2.1. This discrepancy strongly suggests that the theory underestimates the electron - vapor atom scattering rate. At lower temperatures, the absorption spectrum splits into several peaks. The multiple peak structure is partly attributed to the spatial inhomogeneity of the static holding electric field perpendicular to the electron sheet.Comment: 15 pages, 7 figures, submitted to J. Phys. Soc. Jp

    The effect of pressure on statics, dynamics and stability of multielectron bubbles

    Full text link
    The effect of pressure and negative pressure on the modes of oscillation of a multi-electron bubble in liquid helium is calculated. Already at low pressures of the order of 10-100 mbar, these effects are found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    Expansion of the Vortex Cores in YBa2Cu3O6.95 at Low Magnetic Fields

    Full text link
    Muon spin rotation spectroscopy has been used to measure the effective size of the vortex cores in optimally doped YBa2Cu3O6.95 as a function of temperature and magnetic field deep in the superconducting state. While the core size at H=2T is close to 20 angstroms and consistent with that measured by STM at 6T, we find a striking increase in the core size at lower magnetic fields, where it approaches an extraordinarily large value of about 100 angstroms. This suggests that the average value of the superconducting coherence length in cuprate superconductors may be larger than previously thought at low magnetic fields.Comment: 9 pages, 4 figures, 1 text fil

    Recovery surgery for extracapsular extension of squamous cell cancer metastasizing to the lymph nodes in the neck

    Get PDF
    Metastatic neck lymph nodes in massive lesion of their tissue with tumor cells are accompanied by extracapsular extension to the adjacent structures in a number of cases. The greatest problem in clinical oncology is when even extended radical neck dissection fails to completely remove tumor tissue that is macroscopically detectable after surgical resection. In this situation, there is a continued growth of tissue mass that is left on the neck. Thus, the unresectable extracapsular spread of neck lymph node metastases to the adjacent tissues reduces the duration of life in the patients and worsens its quality.The basis for this investigation is clinical observations of patients who have been operated on at the Nizhny Novgorod Regional Clinical Oncology Dispensary (Hospital Two) in the period 2005 to 2016. Histologically, the tumors were squamous cell carcinomas. In this period, there have been 24 Crile operations (radical neck dissection) that are cytoreductive. A primary tumor has been (n = 15) or has not been (n = 9) previously excised. The extracapsular spread of metastatic lymph nodes corresponded to levels IIa, IIb, and III. Cytoreductive cervical lymphadenectomy with the pectoralis musculocutaneous flap covering an unresectable tumor for extracapsular unresectable squamous cell carcinoma metastasizing to the neck lymph nodes should be considered the operation of recovery. This type of surgery is warranted, as tumor mass reduction by eliminating the source of intoxication allows further antitumor treatment (radiotherapy or chemotherapy or their combination) that is contraindicated in patients with tumor lysis in the neck. When the cause of death is the exceedingly continued growth of an unresectable component of radio- and chemoresistant variants of tumor tissue on the neck, the covering of the component with a pectoralis major flap delays a fatal outcome in incurable patients to improve a number of quality-of-life indicators
    • …
    corecore