371 research outputs found

    Proton acceleration in analytic reconnecting current sheets

    Get PDF
    Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~Ī¾-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the ā€œeffectiveā€ resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona

    UV-induced ligand exchange in MHC class I protein crystals

    Get PDF
    High-throughput structure determination of proteināˆ’ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, ā€œconditionalā€, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This ā€œin crystalloā€ exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC Ī²2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families

    Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing.

    Get PDF
    Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential

    Multifunctionality of chiton biomineralized armor with an integrated visual system

    Get PDF
    Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.Engineering and Applied Science

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909

    Get PDF
    T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration

    Electron acceleration and heating in collisionless magnetic reconnection

    Get PDF
    We discuss electron acceleration and heating during collisionless magnetic reconnection by using the results of implicit kinetic simulations of Harris current sheets. We consider and compare electron dynamics in plasmas with different \beta values and perform simulations up to the physical mass ratio. We analyze the typical trajectory of electrons passing through the reconnection region, we study the electron velocity, focusing on the out-of-plane velocity, and we discuss the electron heating along the in-plane and out-of-plane directions

    Detection of Intra-Tumor Self Antigen Recognition during Melanoma Tumor Progression in Mice Using Advanced Multimode Confocal/Two Photon Microscope

    Get PDF
    Determining how tumor immunity is regulated requires understanding the extent to which the anti-tumor immune response ā€œfunctionsā€ in vivo without therapeutic intervention. To better understand this question, we developed advanced multimodal reflectance confocal/two photon fluorescence intra-vital imaging techniques to use in combination with traditional ex vivo analysis of tumor specific T cells. By transferring small numbers of melanoma-specific CD8+ T cells (Pmel-1), in an attempt to mimic physiologic conditions, we found that B16 tumor growth alone was sufficient to induce naive Pmel-1 T cell proliferation and acquisition of effector phenotype. Tumor -primed Pmel-1 T cells, are capable of killing target cells in the periphery and secrete IFNĪ³, but are unable to mediate tumor regression. Within the tumor, Pmel-1 T cells have highly confined mobility, displaying long term interactions with tumor cells. In contrast, adoptively transferred non tumor-specific OT-I T cells show neither confined mobility, nor long term interaction with B16 tumor cells, suggesting that intra-tumor recognition of cognate self antigen by Pmel-1 T cells occurs during tumor growth. Together, these data indicate that lack of anti-tumor efficacy is not solely due to ignorance of self antigen in the tumor microenvironment but rather to active immunosuppressive influences preventing a protective immune response

    Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer

    Get PDF
    BACKGROUND: It is not uncommon to observe circulating tumor antigen-specific T lymphocytes in cancer patients despite a lack of significant infiltration and destruction of their tumors. Thus, an important goal for tumor immunotherapy is to identify ways to modulate in vivo anti-tumor immunity to achieve clinical efficacy. We investigate this proposition in a spontaneous mouse tumor model, Rip1-Tag2. METHODS: Experimental therapies were carried out in two distinctive trial designs, intended to either intervene in the explosive growth of small tumors, or regress bulky end-stage tumors. Rip1-Tag2 mice received a single transfer of splenocytes from Tag-specific, CD4(+) T cell receptor transgenic mice, a single sub-lethal radiation, or a combination therapy in which the lymphocyte transfer was preceded by the sub-lethal radiation. Tumor burden, the extent of lymphocyte infiltration into solid tumors and host survival were used to assess the efficacy of these therapeutic approaches. RESULTS: In either intervention or regression, the transfer of Tag-specific T cells alone did not result in significant lymphocyte infiltration into solid tumors, not did it affect tumor growth or host survival. In contrast, the combination therapy resulted in significant reduction in tumor burden, increase in lymphocyte infiltration into solid tumors, and extension of survival. CONCLUSIONS: The results indicate that certain types of solid tumors may be intrinsically resistant to infiltration and destruction by tumor-specific T lymphocytes. Our data suggest that such resistance can be disrupted by sub-lethal radiation. The combinatorial approach presented here merits consideration in the design of clinical trials aimed to achieve T cell-mediated anti-tumor immunity

    The Natural History of Severe Acute Liver Injury.

    Get PDF
    OBJECTIVES: Acute liver failure (ALF) is classically defined by coagulopathy and hepatic encephalopathy (HE); however, acute liver injury (ALI), i.e., severe acute hepatocyte necrosis without HE, has not been carefully defined nor studied. Our aim is to describe the clinical course of specifically defined ALI, including the risk and clinical predictors of poor outcomes, namely progression to ALF, the need for liver transplantation (LT) and death. METHODS: 386 subjects prospectively enrolled in the Acute Liver Failure Study Group registry between 1 September 2008 through 25 October 2013, met criteria for ALI: International Normalized Ratio (INR)ā‰„2.0 and alanine aminotransferase (ALT)ā‰„10 Ɨ elevated (irrespective of bilirubin level) for acetaminophen (N-acetyl-p-aminophenol, APAP) ALI, or INRā‰„2.0, ALTā‰„10x elevated, and bilirubinā‰„3.0ā€‰mg/dl for non-APAP ALI, both groups without any discernible HE. Subjects who progressed to poor outcomes (ALF, death, LT) were compared, by univariate analysis, with those who recovered. A model to predict poor outcome was developed using the random forest (RF) procedure. RESULTS: Progression to a poor outcome occurred in 90/386 (23%), primarily in non-APAP (71/179, 40%) vs. only 14/194 (7.2%) in APAP patients comprising 52% of all cases (13 cases did not have an etiology assigned; 5 of whom had a poor outcome). Of 82 variables entered into the RF procedure: etiology, bilirubin, INR, APAP level and duration of jaundice were the most predictive of progression to ALF, LT, or death. CONCLUSIONS: A majority of ALI cases are due to APAP, 93% of whom will improve rapidly and fully recover, while non-APAP patients have a far greater risk of poor outcome and should be targeted for early referral to a liver transplant center
    • ā€¦
    corecore