1,193 research outputs found

    Dynamics of the vortex line density in superfluid counterflow turbulence

    Full text link
    Describing superfluid turbulence at intermediate scales between the inter-vortex distance and the macroscale requires an acceptable equation of motion for the density of quantized vortex lines L\cal{L}. The closure of such an equation for superfluid inhomogeneous flows requires additional inputs besides L\cal{L} and the normal and superfluid velocity fields. In this paper we offer a minimal closure using one additional anisotropy parameter Il0I_{l0}. Using the example of counterflow superfluid turbulence we derive two coupled closure equations for the vortex line density and the anisotropy parameter Il0I_{l0} with an input of the normal and superfluid velocity fields. The various closure assumptions and the predictions of the resulting theory are tested against numerical simulations.Comment: 7 pages, 5 figure

    Multifractal analysis of stress time series during ultrathin lubricant film melting

    Get PDF
    Melting of an ultrathin lubricant film confined between two atomically flat surfaces is we studied using the rheological model for viscoelastic matter approximation. Phase diagram with domains, corresponding to sliding, dry, and two types of stickslipstick-slip friction regimes has been built taking into account additive noises of stress, strain, and temperature of the lubricant. The stress time series have been obtained for all regimes of friction using the Stratonovich interpretation. It has been shown that self-similar regime of lubricant melting is observed when intensity of temperature noise is much larger than intensities of strain and stress noises. This regime is defined by homogenous distribution, at which characteristic stress scale is absent. We study stress time series obtained for all friction regimes using multifractal detrended fluctuation analysis. It has been shown that multifractality of these series is caused by different correlations that are present in the system and also by a power-law distribution. Since the power-law distribution is related to small stresses, this case corresponds to self-similar solid-like lubricant.Comment: 22 pages, 10 figures, 41 reference

    Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows : Anisotropy on Small Scales

    Get PDF
    Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid He-4 turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.Peer reviewe
    corecore