404 research outputs found

    Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone

    Use of \u3e100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

    Get PDF
    Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged \u3e100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) \u3c 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11–34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count 86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations

    Deletions in CWH43 cause idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder that occurs in about 1% of individuals over age 60 and is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and cognitive decline. The cause and pathophysiology of iNPH are largely unknown. We performed whole exome sequencing of DNA obtained from 53 unrelated iNPH patients. Two recurrent heterozygous loss of function deletions in CWH43 were observed in 15% of iNPH patients and were significantly enriched 6.6-fold and 2.7-fold, respectively, when compared to the general population. Cwh43 modifies the lipid anchor of glycosylphosphatidylinositol-anchored proteins. Mice heterozygous for CWH43 deletion appeared grossly normal but displayed hydrocephalus, gait and balance abnormalities, decreased numbers of ependymal cilia, and decreased localization of glycosylphosphatidylinositol-anchored proteins to the apical surfaces of choroid plexus and ependymal cells. Our findings provide novel mechanistic insights into the origins of iNPH and demonstrate that it represents a distinct disease entity

    Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity

    Get PDF
    Funding Information: We thank Dr. David James, Dr. Frederick Lang, Dr. Cameron Brennan, and Dr. Harley Kornblum for GBM-PDX neurospheres. We thank Dr. Karen Arden for continuous support and critical evaluation of the results. We thank Dr. Robert Davis, Dr. German Gomez, Dr. Tiffany Taylor, Dr. Rachel Reed, Dr. Melissa Mcalonis, and Dr. Sora Lee for technical support. In memory of Rosa Lupo. This work was supported by the Defeat GBM Research Collaborative, a subsidiary of the National Brain Tumor Society (F.B.F. and P.S.M.), R01-NS080939 (F.B.F.), the James S. McDonnell Foundation (F.B.F.), the National Cancer Institute (2T32CA009523-29A1) (A.H.T), and 1RO1NS097649-01 (C.C.C.). C.Z. was partially supported by an American-Italian Cancer Foundation post-doctoral research fellowship. F.L. received a Gao Feng Gao Yuan Scholarship Award. T.C.G., A.K.S., P.S.M., W.K.C., and F.B.F. receive salary and additional support from the Ludwig Institute for Cancer Research. Publisher Copyright: © 2017 Zanca et al.In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.publishersversionPeer reviewe

    Mapping the Binding between the Tetraspanin Molecule (Sjc23) of Schistosoma japonicum and Human Non-Immune IgG

    Get PDF
    BACKGROUND: Schistosomal parasites can establish parasitization in a human host for decades; evasion of host immunorecognition including surface masking by acquisition of host serum components is one of the strategies explored by the parasites. Parasite molecules anchored on the membrane are the main elements in the interaction. Sjc23, a member of the tetraspanin (TSP) family of Schistosoma japonicum, was previously found to be highly immunogenic and regarded as a vaccine candidate against schistosomiasis. However, studies indicated that immunization with Sjc23 generated rapid antibody responses which were less protective than that with other antigens. The biological function of this membrane-anchored molecule has not been defined after decades of vaccination studies. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we explored affinity pull-down and peptide competition assays to investigate the potential binding between Sjc23 molecule and human non-immune IgG. We determined that Sjc23 could bind human non-immune IgG and the binding was through the interaction of the large extra-cellular domain (LED) of Sjc23 (named Sjc23-LED) with the Fc domain of human IgG. Sjc23 had no affinity to other immunoglobulin types. Affinity precipitation (pull-down assay) in the presence of overlapping peptides further pinpointed to a 9-amino acid motif within Sjc23-LED that mediated the binding to human IgG. CONCLUSION AND SIGNIFICANCE: S. japonicum parasites cloak themselves through interaction with human non-immune IgG, and a member of the tetraspanin family, Sjc23, mediated the acquisition of human IgG via the interaction of a motif of 9 amino acids with the Fc domain of the IgG molecule. The consequence of this interaction will likely benefit parasitism of S. japonicum by evasion of host immune recognition or immunoresponses. This is the first report that an epitope of schistosomal ligand and its immunoglobulin receptor are defined, which provides further evidence of immune evasion strategy adopted by S. japonicum

    Seroepidemiology of human Toxoplasma gondii infection in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxoplasmosis is an important zoonotic parasitic disease worldwide. In immune competent individuals, <it>Toxoplasma gondii </it>preferentially infects tissues of central nervous systems, which might be an adding factor of certain psychiatric disorders. Congenital transmission of <it>T. gondii </it>during pregnancy has been regarded as a risk factor for the health of newborn infants. While in immune-compromised individuals, the parasite can cause life-threatening infections. This study aims to investigate the prevalence of <it>T. gondii </it>infection among clinically healthy <b>i</b>ndividuals and patients with psychiatric disorders in China and to identify the potential risk factors related to the vulnerability of infection in the population.</p> <p>Methods</p> <p>Serum samples from 2634 healthy individuals and 547 patients with certain psychiatric disorders in Changchun and Daqing in the northeast, and in Shanghai in the south of China were examined respectively for the levels of anti-<it>T. gondii </it>IgG by indirect ELISA and a direct agglutination assay. Prevalence of <it>T. gondii </it>infection in the Chinese population in respect of gender, age, residence and health status was systematically analyzed.</p> <p>Results</p> <p>The overall anti-<it>T. gondii </it>IgG prevalence in the study population was 12.3%. In the clinically healthy population 12.5% was sero-positive and in the group with psychiatric disorders 11.3% of these patients were positive with anti-<it>T. gondii </it>IgG. A significant difference (P = 0.004) was found between male and female in the healthy population, the seroprevalence was 10.5% in men versus 14.3% in women. Furthermore, the difference of <it>T. gondii </it>infection rate between male and female in the 20-19 year's group was more obvious, with 6.4% in male population and 14.6% in female population.</p> <p>Conclusion</p> <p>A significant higher prevalence of <it>T. gondii </it>infection was observed in female in the clinically healthy population. No correlation was found between <it>T. gondii </it>infection and psychiatric disorders in this study. Results suggest that women are more exposed to <it>T. gondii </it>infection than men in China. The data argue for deeper investigations for the potential risk factors that threat the female populations.</p

    Associations between the COVID-19 pandemic and women’s fertility intentions: a multi-country, cross-sectional (I-SHARE) study

    Get PDF
    Introduction The COVID-19 pandemic, together with the subsequent social distancing measures, could lead to shifts in family and fertility planning. This study aimed to explore the associations between the COVID-19 pandemic and changes in fertility intentions among an international sample of reproductive-aged women. Methods A multi-country, cross-sectional study based on data from 10 672 women aged 18–49 years who participated in the International Sexual Health And REproductive Health (I-SHARE) study, which organised an international online survey between July 2020 and February 2021. Factors associated with changes in fertility intentions were explored using multinomial probit regression models. Cluster-robust standard errors were used to calculate model parameters. Results Of 10 672 included reproductive-aged women, 14.4% reported changing their fertility intentions due to the pandemic, with 10.2% postponement and 4.2% acceleration. Women who had ever been isolated/quarantined were more likely to postpone their fertility intentions (adjusted odds ratio (AOR)=1.41; 95% CI 1.18 to 1.69) compared with those who had not; women who lived with a steady partner were more likely to want children sooner (AOR=1.57; 95% CI 1.10 to 2.23) compared with those who did not; and those who reported a higher frequency of getting angry, feeling frustrated, or worrying about their finances were more likely to postpone their fertility intentions. The main findings were robust in the sensitivity analyses. Conclusions Most women who changed fertility intentions because of the pandemic have postponed intentions to expand their families. The pandemic-induced exposures were associated with these postponements

    Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana

    Get PDF
    Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2β) in two heterologous systems, i.e. the yeast Saccharomycescerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2β rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Δ) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2β under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2β in plant stress responses
    corecore