1,005 research outputs found

    Testosterone for the aging male; current evidence and recommended practice

    Get PDF
    An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations

    High eccentricity planets from the Anglo-Australian Planet Search

    Get PDF
    We report Doppler measurements of the stars HD187085 and HD20782 which indicate two high eccentricity low-mass companions to the stars. We find HD187085 has a Jupiter-mass companion with a ~1000d orbit. Our formal `best fit' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on RMS and chi^2) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD187085. Our dataset for HD20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD20782 has M sin i=1.77+/-0.22M_JUP, an orbital period of 595.86+/-0.03d and an orbit with an eccentricity of 0.92+/-0.03. The detection of such high-eccentricity (and relatively low velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high eccentricity systems.Comment: to appear in MNRA

    Search for nearby Earth analogs I. 15 planet candidates found in PFS data

    Get PDF
    30 pages, 20 figures, 3 tables, accepted for publication in ApJSThe radial velocity (RV) method plays a major role in the discovery of nearby exoplanets. To efficiently find planet candidates from the data obtained in high-precision RV surveys, we apply a signal diagnostic framework to detect RV signals that are statistically significant, consistent in time, robust in the choice of noise models, and do not correlated with stellar activity. Based on the application of this approach to the survey data of the Planet Finder Spectrograph, we report 15 planet candidates located in 14 stellar systems. We find that the orbits of the planet candidates around HD 210193, 103949, 8326, and 71135 are consistent with temperate zones around these stars (where liquid water could exist on the surface). With periods of 7.76 and 15.14 days, respectively, the planet candidates around star HIP 54373 form a 1:2 resonance system. These discoveries demonstrate the feasibility of automated detection of exoplanets from large RV surveys, which may provide a complete sample of nearby Earth analogs.Peer reviewedFinal Accepted Versio

    Complex Extension of Quantum Mechanics

    Get PDF
    It is shown that the standard formulation of quantum mechanics in terms of Hermitian Hamiltonians is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct to explain experimental data. One might expect that a quantum theory based on a non-Hermitian Hamiltonian would violate unitarity. However, if PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed physical symmetry C of the Hamiltonian. Using C, an inner product is constructed whose associated norm is positive definite. This construction is completely general and works for any PT-symmetric Hamiltonian. Observables exhibit CPT symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalisation of it.Comment: 4 Pages, Version to appear in PR

    Primeval very low-mass stars and brown dwarfs -- II. The most metal-poor substellar object

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.SDSS J010448.46+153501.8 has previously been classified as an sdM9.5 subdwarf. However, it's very blue J-K colour (-0.15+/-0.17) suggests a much lower metallicity compared to normal sdM9.5 subdwarfs. Here we re-classify this object as a usdL1.5 subdwarf based on a new optical and near-infrared spectrum obtained with X-shooter on the Very Large Telescope. Spectral fitting with BT-Settl models leads to Teff = 2450+/-150 K, [Fe/H] = -2.4+/-0.2 and log g = 5.5+/-0.25. We estimate a mass for SDSS J010448.46+153501.8 of 0.0855+/-0.0015 M_{\sun} which is just below the hydrogen-burning minimum mass at [Fe/H] = -2.4 (\sim0.0875 M_{\sun}) according to evolutionary models. Our analysis thus shows SDSS J0104+15 to be the most metal-poor and highest mass substellar object known to date. We found that SDSS J010448.46+153501.8 is joined by another five known L subdwarfs (2MASS J05325346+8246465, 2MASS J06164006-6407194, SDSS J125637.16-022452.2, ULAS J151913.03-000030.0, and 2MASS J16262034+3925190) in a `halo brown dwarf transition zone' in the Teff-[Fe/H] plane, which represents a narrow mass range in which unsteady nuclear fusion occurs. This halo brown dwarf transition zone forms a `substellar subdwarf gap' for mid L to early T types.Peer reviewe

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure

    Cm-Wavelength Total Flux and Linear Polarization Properties of Radio-Loud BL Lacertae Objects

    Full text link
    Results from a long-term program to quantify the range of behavior of the cm-wavelength total flux and linear polarization variability properties of a sample of 41 radio-loud BL Lac objects using weekly to tri-monthly observations with the University of Michigan 26-m telescope operating at 14.5, 8.0, and 4.8 GHz are presented; these observations are used to identify class-dependent differences between these BL Lacs and QSOs in the Pearson-Readhead sample. The BL Lacs are found to be more highly variable in total flux density than the QSOs, exhibiting changes that are often nearly-simultaneous and of comparable amplitude at 14.5 and 4.8 GHz in contrast to the behavior in the QSOs and supporting the existence of class-dependent differences in opacity within the parsec-scale jet flows. Structure function analyses of the flux observations quantify that a characteristic timescale is identifiable in only 1/3 of the BL Lacs. The time-averaged fractional linear polarizations are only on the order of a few percent and are consistent with the presence of tangled magnetic fields within the emitting regions. In many sources a preferred long-term orientation of the EVPA is present; when compared with the VLBI structural axis, no preferred position angle difference is identified. The polarized flux typically exhibits variability with timescales of months to a few years and shows the signature of a propagating shock during several resolved outbursts. The observations indicate that the source emission is predominately due to evolving source components and support the occurrence of more frequent shock formation in BL Lac parsec-scale flows than in QSO jets. The differences in variability behavior and polarization between BL Lacs and QSOs can be explained by differences in jet stability.Comment: 1 LaTex (aastex) file, 21 postscript figure files, 2 external LaTex table files. To appear in the Astrophysical Journa

    The INSCHOOL project: showcasing participatory qualitative methods derived from patient and public involvement and engagement (PPIE) work with young people with long-term health conditions

    Get PDF
    Background Evidence suggests resources and services benefit from being developed in collaboration with the young people they aim to support. Despite this, patient and public involvement and engagement (PPIE) with young people is often tokenistic, limited in engagement and not developmentally tailored to young people. Our paper aims to build knowledge and practice for meaningfully engaging with young people in research design, analysis and as research participants. Methods We report the participatory processes from the INSCHOOL project, examining long-term health conditions and schooling among 11–18 year olds. Young people were consulted at the inception of the project through a hospital- based youth forum. This began a partnership where young people co-designed study documents, informed the recruitment process, developed creative approaches to data collection, participated in pilot interviews, co-analysed the qualitative data and co-presented results. Results PPIE advisors, participants and researchers all benefitted from consistent involvement of young people throughout the project. Long-term engagement allowed advisors and researchers to build rapport and facilitated openness in sharing perspectives. PPIE advisors valued being able to shape the initial aims and language of the research questions, and contribute to every subsequent stage of the project. Advisors co-designed flexible data collection methods for the qualitative project that provided participants with choices in how they took part (interviews, focus groups, written tasks). Further choice was offered through co-designed preparation activities where participants completed one of four creative activities prior to the interview. Participants were therefore able to have control over how they participated and how they described their school experiences. Through participatory analysis meetings advisors used their first-hand experiences to inform the creation of themes and the language used to describe these themes. PPIE in every stage of the process helped researchers to keep the results grounded in young people’s experience and challenge their assumptions as adults

    Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    Get PDF
    International audienceStructure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviou
    corecore