469 research outputs found

    Effects on Bone and Muscle upon Treadmill Interval Training in Hypogonadal Male Rats

    Get PDF
    Testosterone deficiency in males is linked to various pathological conditions, including muscle and bone loss. This study evaluated the potential of different training modalities to counteract these losses in hypogonadal male rats. A total of 54 male Wistar rats underwent either castration (ORX, n = 18) or sham castration (n = 18), with 18 castrated rats engaging in uphill, level, or downhill interval treadmill training. Analyses were conducted at 4, 8, and 12 weeks postsurgery. Muscle force of the soleus muscle, muscle tissue samples, and bone characteristics were analyzed. No significant differences were observed in cortical bone characteristics. Castrated rats experienced decreased trabecular bone mineral density compared to sham-operated rats. However, 12 weeks of training increased trabecular bone mineral density, with no significant differences among groups. Muscle force measurements revealed decreased tetanic force in castrated rats at week 12, while uphill and downhill interval training restored force to sham group levels and led to muscle hypertrophy compared to ORX animals. Linear regression analyses showed a positive correlation between bone biomechanical characteristics and muscle force. The findings suggest that running exercise can prevent bone loss in osteoporosis, with similar bone restoration effects observed across different training modalities

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice

    Get PDF
    Modulation of tumour cell growth by tumour-infiltrating leucocytes is of high importance for the biological behaviour of malignant neoplasms. In melanoma, tumour-associated macrophages (TAM) and tumour-infiltrating lymphocytes (TIL) are of particular interest as inhibitors or enhancers of cell growth. Recruitment of leucocytes from the peripheral blood into the tumour site is mediated predominantly by chemotaxins, particularly by the group of chemokines

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges

    Get PDF
    Despite advances in surgery and adjuvant regimes, gastrointestinal malignancy remains a major cause of neoplastic mortality. Immunotherapy is an emerging and now successful treatment modality for numerous cancers that relies on the manipulation of the immune system and its effector functions to eradicate tumour cells. The discovery that the pan-epithelial homotypic cell adhesion molecule EpCAM is differentially expressed on gastrointestinal tumours has made this a viable target for immunotherapy. Clinical trials using naked anti EpCAM antibody, immunoconjugates, anti-idiotypic and dendritic cell vaccines have met variable success. The murine IgG2a Edrecolomab was shown to reduce mortality and morbidity at a level slightly lower than treatment with 5FU and Levamisole when administered to patients with advanced colorectal carcinoma in a large randomised controlled trial. Fully human and trifunctional antibodies that specifically recruit CD3-positive lymphocytes are now being tested clinically in the treatment of minimal residual disease and ascites. Although clinical trials are in their infancy, the future may bring forth an EpCAM mediated approach for the effective activation and harnessing of the immune system to destroy a pathological aberrance that has otherwise largely escaped its attention

    Expression of SCF splice variants in human melanocytes and melanoma cell lines: potential prognostic implications

    Get PDF
    Stem cell factor (SCF), the ligand for c-Kit, is known to regulate developmental and functional processes of haematopoietic stem cells, mast cells and melanocytes. Two different splice variants form predominantly soluble (sSCF or SCF-1) and in addition some membrane-bound SCF (mSCF or SCF-2). In order to explore the prognostic significance of these molecules in melanoma, total SCF, SCF splice variants and c-Kit expression were studied in normal skin melanocytes and in 11 different melanoma cell lines, using reverse transcription polymerase chain reaction, immunocytochemistry and enzyme-linked immunosorbent assay. Nine of the 11 melanoma cell lines expressed SCF-1 mRNA, only two of them SCF-2, and these two also SCF-1. Coexpression of both SCF-1 and c-Kit was noted in five cell lines, and only one cell line as well as normal melanocytes expressed both SCF-1 and SCF-2 as well as c-Kit. Corresponding results were obtained on immunocytochemical staining. Of three exemplary melanoma cell lines studied, two expressing SCF mRNA also released SCF spontaneously and on stimulation, whereas the line lacking SCF and c-kit mRNA (SK-Mel-23) failed to do so. These data demonstrate thus that melanoma cell lines, particularly those known to metastasize in vivo, lose the ability to express SCF-2 mRNA, suggesting that this molecule may serve, next to c-Kit, as a prognostic marker for malignant melanoma. © 2000 Cancer Research Campaig

    Molecular Phylogeny of the Acanthocephala (Class Palaeacanthocephala) with a Paraphyletic Assemblage of the Orders Polymorphida and Echinorhynchida

    Get PDF
    Acanthocephalans are attractive candidates as model organisms for studying the ecology and co-evolutionary history of parasitic life cycles in the marine ecosystem. Adding to earlier molecular analyses of this taxon, a total of 36 acanthocephalans belonging to the classes Archiacanthocephala (3 species), Eoacanthocephala (3 species), Palaeacanthocephala (29 species), Polyacanthocephala (1 species) and Rotifera as outgroup (3 species) were analyzed by using Bayesian Inference and Maximum Likelihood analyses of nuclear 18S rDNA sequence. This data set included three re-collected and six newly collected taxa, Bolbosoma vasculosum from Lepturacanthus savala, Filisoma rizalinum from Scatophagus argus, Rhadinorhynchus pristis from Gempylus serpens, R. lintoni from Selar crumenophthalmus, Serrasentis sagittifer from Johnius coitor, and Southwellina hispida from Epinephelus coioides, representing 5 new host and 3 new locality records. The resulting trees suggest a paraphyletic arrangement of the Echinorhynchida and Polymorphida inside the Palaeacanthocephala. This questions the placement of the genera Serrasentis and Gorgorhynchoides within the Echinorhynchida and not the Polymorphida, necessitating further insights into the systematic position of these taxa based on morphology

    EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer

    Get PDF
    BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is frequently expressed in breast cancer, and its expression has been associated with poor prognosis. Breast cancer can be subdivided into intrinsic subtypes, differing in prognosis and response to therapy. METHODS: To investigate the association between EpCAM expression and prognosis in the intrinsic subtypes of breast cancer, we performed immunohistochemical studies on a tissue microarray encompassing a total of 1365 breast cancers with detailed clinicopathological annotation and outcomes data. RESULTS: We observed EpCAM expression in 660 out of 1365 (48%) cases. EpCAM expression varied significantly in the different intrinsic subtypes. In univariate analyses of all cases, EpCAM expression was associated with a significantly worse overall survival. In the intrinsic subtypes, EpCAM expression was associated with an unfavourable prognosis in the basal-like and luminal B HER2(+) subtypes but associated with a favourable prognosis in the HER2 subtype. Consistently, specific ablation of EpCAM resulted in increased cell viability in the breast cancer cell line SKBR3 (ER(−), PR(−), and HER2(+)) but decreased viability in the breast cancer cell line MDA-MB-231 (ER(−), PR(−), and HER2(−) ). CONCLUSION: The differential association of EpCAM expression with prognosis in intrinsic subtypes has important implications for the development of EpCAM-targeted therapies in breast cancer
    • …
    corecore