611 research outputs found

    A Waveguide for Bose-Einstein Condensates

    Get PDF
    We report on the creation of Bose-Einstein condensates of 87^{87}Rb in a specially designed hybrid, dipole and magnetic trap. This trap naturally allows the coherent transfer of matter waves into a pure dipole potential waveguide based on a doughnut beam. Specifically, we present studies of the coherence of the ensemble in the hybrid trap and during the evolution in the waveguide by means of an autocorrelation interferometer scheme. By monitoring the expansion of the ensemble in the waveguide we observe a mean field dominated acceleration on a much longer time scale than in the free 3D expansion. Both the autocorrelation interference and the pure expansion measurements are in excellent agreement with theoretical predictions of the ensemble dynamics

    Second Order Correlation Function of a Phase Fluctuating Bose-Einstein Condensate

    Get PDF
    The coherence properties of phase fluctuating Bose-Einstein condensates are studied both theoretically and experimentally. We derive a general expression for the N-particle correlation function of a condensed Bose gas in a highly elongated trapping potential. The second order correlation function is analyzed in detail and an interferometric method to directly measure it is discussed and experimentally implemented. Using a Bragg diffraction interferometer, we measure intensity correlations in the interference pattern generated by two spatially displaced copies of a parent condensate. Our experiment demonstrates how to characterize the second order correlation function of a highly elongated condensate and to measure its phase coherence length.Comment: 22 pages, 5 figure

    Evidence of Luttinger liquid behavior in one-dimensional dipolar quantum gases

    Get PDF
    The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in a wide range of intermediate densities, evolving into a Tonks-Girardeau gas at low density and into a classical quasi-ordered state at high density. The density dependence of the Luttinger exponent is extracted from the numerical data, providing analytical predictions for observable quantities, such as the structure factor and the momentum distribution. We discuss the accessibility of such predictions in current experiments with ultracold atomic and molecular gases.Comment: 4 pages, 3 EPS figures, Revtex

    Phase Fluctuations in Bose-Einstein Condensates

    Full text link
    We demonstrate the existence of phase fluctuations in elongated Bose-Einstein Condensates (BECs) and study the dependence of those fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the phase coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation is developed.Comment: 11 pages, 7 figure

    Characterization and control of phase fluctuations in elongated Bose-Einstein condensates

    Full text link
    Quasi one dimensional Bose-Einstein condensates (BECs) in elongated traps exhibit significant phase fluctuations even at very low temperatures. We present recent experimental results on the dynamic transformation of phase fluctuations into density modulations during time-of-flight and show the excellent quantitative agreement with the theoretical prediction. In addition we confirm that under our experimental conditions, in the magnetic trap density modulations are strongly suppressed even when the phase fluctuates. The paper also discusses our theoretical results on control of the condensate phase by employing a time-dependent perturbation. Our results set important limitations on future applications of BEC in precision atom interferometry and atom optics, but at the same time suggest pathways to overcome these limitations.Comment: 9 pages, 7 figure

    Urban mining for asphalt pavements: A review

    Get PDF
    The increasing consumption of natural resources for road construction and generation of urban waste materials are two global ecological problems. Urban mining aims to convert waste materials into raw materials for industrial production, and as a result, address both problems simultaneously. This study explores the potential of urban mining for asphalt pavement surface courses. In the first part, as each country/region has its unique challenge with waste materials, a screening method taking the EU and Switzerland as case studies is employed to select waste materials that potentially qualify for asphalt surface courses. The second part presents a review of laboratory studies regarding the performance of asphalt mixtures with selected waste materials. Based on the industrial experience, the third part dis- cusses the technology, specifications and cost considerations of asphalt surface courses with waste materials. Furthermore, the technical maturities for using waste materials are estimated in terms of technology readiness level (TRL). Overall, the paper demonstrates that various categories of waste ma- terials can be potentially used in asphalt surface courses, revealing urban mining opportunities. The selected waste materials may improve the performance of asphalt mixtures with optimization of several factors, such as the fraction size and amounts of waste materials for addition or replacement. The TRL results showed that using crumb rubber (wet process) and steel slag are currently more mature than using other waste materials in asphalt surface course
    corecore