700 research outputs found
Asteroid models from the Lowell Photometric Database
We use the lightcurve inversion method to derive new shape models and spin
states of asteroids from the sparse-in-time photometry compiled in the Lowell
Photometric Database. To speed up the time-consuming process of scanning the
period parameter space through the use of convex shape models, we use the
distributed computing project Asteroids@home, running on the Berkeley Open
Infrastructure for Network Computing (BOINC) platform. This way, the
period-search interval is divided into hundreds of smaller intervals. These
intervals are scanned separately by different volunteers and then joined
together. We also use an alternative, faster, approach when searching the
best-fit period by using a model of triaxial ellipsoid. By this, we can
independently confirm periods found with convex models and also find rotation
periods for some of those asteroids for which the convex-model approach gives
too many solutions. From the analysis of Lowell photometric data of the first
100,000 numbered asteroids, we derived 328 new models. This almost doubles the
number of available models. We tested the reliability of our results by
comparing models that were derived from purely Lowell data with those based on
dense lightcurves, and we found that the rate of false-positive solutions is
very low. We also present updated plots of the distribution of spin obliquities
and pole ecliptic longitudes that confirm previous findings about a non-uniform
distribution of spin axes. However, the models reconstructed from noisy sparse
data are heavily biased towards more elongated bodies with high lightcurve
amplitudes
ADPR 221: Strategic Writing for Advertising and Public Relations—A Peer Review of Teaching Benchmark Portfolio
The objective for this course portfolio was to document the changes implemented to a core advertising and public relations writing course. The portfolio outlines five proposed goals for the revised course: students should be able to write for an audience, give and receive quality feedback, prepare for novel situations in the workplace, see writing as rewarding, creative, and fun, and learn professional conventions and industry standards for strategic writing. The course was significantly restructured in order to better reach these goals on student assignments, activities, and during lectures. Each goal was assessed with a combination of qualitative and quantitative methods. Although the results indicate a need for a better assessment strategy, the overall process was helpful in determining how to better structure the course with student goals in mind and will strongly influence further development for future sections
Composite Axial Flow Propulsor for Small Aircraft
This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail.
Inlet Channel for a Ducted Fan Propulsion System of a Light Aircraft
So-called "cold-jet" propulsion units consist of a piston engine, a blower and the necessary air duct. Till now, all attempts to utilize "cold-jet" propulsion units to maintain the thrust of an airplane have been unsuccessful. Analysis has shown that the main difficulty is the deformation of the flow field at the entry to the blower [1]
A Proposal for Ensuring the Quality of Aerospace Engineering Higher Education in Europe
The paper presents a possible roadmap for the definition of a European quality label for aerospace related higher education degrees. The proposal is the result of a two-years long Horizon 2020 project that has involved a great portion of the European stakeholders in aerospace: Universities, research centres, industries (both small and large) networks, associations and accreditation agencies. The core concept established is that it is possible to establish a sector-specific, content based, quality system, that can complement the existing national or European accreditation systems, providing added value to the internal and/or external quality assurance processes that are in place in most EU countries. The tools and processes proposed are sufficiently simple to be manageable by Universities in addition to their national accreditation processes or as stand-alone assessment. The main goal of the proposed process is the evaluation of the quality of the aerospace curricula in the European context, whereas the accreditation of the programme can be seen as an optional extension of the process, subject to further national regulations. The process is proposed in view of the awarding of a sector-specific, content based, quality label, to be issued by an appropriate legally recognized and qualified institution. A set of 8 field tests with volunteering universities throughout Europe has been performed. They experienced the method as very practical and to the point
Design of Carbon Composite Driveshaft for Ultralight Aircraft Propulsion System
This paper deals with the design of the carbon fibre composite driveshaft. This driveshaft will be used for connection between piston engine and propulsor of the type of axial-flow fan. Three different versions of driveshaft were designed and produced. Version 1 if completely made of Al alloy. Version 2 is of hybrid design where the central part is made of high strength carbon composite and flanges are made of Al alloy. Adhesive bond is used for connection between flanges and the central CFRP tube. Version 3 differs from the version 2 by aplication of ultrahigh-strength carbon fibre on the central part. Dimensions and design conditions are equal for all three versions to obtain simply comparable results. Calculations of driveshafts are described in the paper.
From Boolean Equalities to Constraints
Although functional as well as logic languages use equality to discriminate between logically different cases, the operational meaning of equality is different in such languages. Functional languages reduce equational expressions to their Boolean values, True or False, logic languages use unification to check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional and logic programming features, offers two kinds of equational expressions so that the programmer has to distinguish between these uses. We show that this distinction can be avoided by providing an analysis and transformation method that automatically selects the appropriate operation. Without this distinction in source programs, the language design can be simplified and the execution of programs can be optimized. As a consequence, we show that one kind of equational expressions is sufficient and unification is nothing else than an optimization of Boolean equality
Dislocation strain as the mechanism of phonon scattering at grain boundaries
Thermal conductivities of polycrystalline thermoelectric materials are satisfactorily calculated by replacing the commonly used Casimir model (freqeuncy-independent) with grain boundary dislocation strain model (frequency-dependent) of Klemens. It is demonstrated that the grain boundaries are better described as a collection of dislocations rather than perfectly scattering interfaces
Benfordov zakon
Članak prikazuje zanimljivi statistički tekst s mogućom primjenom u otkrivanju prevara u financijskim izvještajima. Problem intrigira matematičare i financijske stručnjaka od 1881 godine kada je Simon Newcomb primijetio neočekivane pravilnosti ponavljanja znamenaka u logaritamskim tablicam
- …