4,959 research outputs found

    Prediction of airfoil stall using Navier-Stokes equations in streamline coordinates

    Get PDF
    A Navier-Stokes procedure to calculate the flow about an airfoil at incidence was developed. The parabolized equations are solved in the streamline coordinates generated for an arbitrary airfoil shape using conformal mapping. A modified k-epsilon turbulence model is applied in the entire domain, but the eddy viscosity in the laminar region is suppressed artificially to simulate the region correctly. The procedure was applied to airfoils at various angles of attack, and the results are quite satisfactory for both laminar and turbulent flows. It is shown that the present choice of the coordinate system reduces the error due to numerical diffusion, and that the lift is accurately predicted for a wide range of incidence

    Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability

    Full text link
    Modern grid monitoring equipment enables utilities to collect detailed records of power interruptions. These data are aggregated to compute publicly reported metrics describing high-level characteristics of grid performance. The current work explores the depth of insights that can be gained from public data, and the implications of losing visibility into heterogeneity in grid performance through aggregation. We present an exploratory analysis examining three years of high-resolution power interruption data collected by archiving information posted in real-time on the public-facing website of a utility in the Western United States. We report on the size, frequency and duration of individual power interruptions, and on spatio-temporal variability in aggregate reliability metrics. Our results show that metrics of grid performance can vary spatially and temporally by orders of magnitude, revealing heterogeneity that is not evidenced in publicly reported metrics. We show that limited access to granular information presents a substantive barrier to conducting detailed policy analysis, and discuss how more widespread data access could help to answer questions that remain unanswered in the literature to date. Given open questions about whether grid performance is adequate to support societal needs, we recommend establishing pathways to make high-resolution power interruption data available to support policy research.Comment: Journal submission (in review), 22 pages, 8 figures, 1 tabl

    Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace

    Full text link
    We present a detailed study of the dynamic response of a ring of NN equally spaced Josephson junctions to a time-periodic external flux, including screening current effects. The dynamics are described by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, and we include Faraday's law for the flux. We find that the time-averaged I−VI-V characteristics show novel {\em subharmonic giant Shapiro voltage resonances}, which strongly depend on having phase slips or not, on NN, on the inductance and on the external drive frequency. We include an estimate of the possible experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques

    Critical Currents of Josephson-Coupled Wire Arrays

    Full text link
    We calculate the current-voltage characteristics and critical current I_c^{array} of an array of Josephson-coupled superconducting wires. The array has two layers, each consisting of a set of parallel wires, arranged at right angles, such that an overdamped resistively-shunted junction forms wherever two wires cross. A uniform magnetic field equal to f flux quanta per plaquette is applied perpendicular to the layers. If f = p/q, where p and q are mutually prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small integer. To an excellent approximation, it is found in a square array of n^2 plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n. This result is interpreted in terms of the commensurability between the array and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure

    Advanced Ultrasonic Structural Monitoring of Waveguides

    Get PDF
    Ultrasonic Guided Waves (UGWs) are a useful tool in those structural health monitoring applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes two methods, based on linear and nonlinear acoustics for structural damage detection based on UGWs. The linear method combine the advantages of UGW inspection with the outcomes of the Discrete Wavelet Transform (DWT) that is used for extracting defect-sensitive features that can be combined to perform a multivariate diagnosis of damage. In particular, the DWT is exploited to generate a set of relevant wavelet coefficients to construct a uni-dimensional or multi-dimensional damage index that, in turn is fed to an outlier algorithm to detect anomalous structural states. The nonlinear acoustics method exploits the circumstance that a cracked medium exhibits high acoustic nonlinearity which is manifested as harmonics in the power spectrum of the received signal. Experimental results also indicate that the harmonic components increase non-linearly in magnitude with increasing amplitude of the input signal. The proposed nonlinear technique identifies the presence of cracks by looking at the harmonics and their nonlinear relationship to the input amplitude. The general framework presented in this paper is applied to the detection of fatigue cracks in an I-shaped steel beam. The probing hardware consists of Lead Zirconate Titanate (PZT) materials used for both ultrasound generation and detection at chosen frequency. The effectiveness of the proposed methods for the structural diagnosis of defects that are small compared to the waveguide cross-sectional area is discussed

    Optimum Tower Crane Selection and Supporting Design Management

    Get PDF
    To optimize tower crane selection and supporting design, lifting requirements (as well as stability) should be examined, followed by a review of economic feasibility. However, construction engineers establish plans based on data provided by equipment suppliers since there are no tools with which to thoroughly examine a support design’s suitability for various crane types, and such plans lack the necessary supporting data. In such cases it is impossible to optimize a tower crane selection to satisfy lifting requirements in terms of cost, and to perform lateral support and foundation design. Thus, this study is intended to develop an optimum tower crane selection and supporting design management method based on stability. All cases that are capable of generating an optimization of approximately 3,000 ~ 15,000 times are calculated to identify the candidate cranes with minimized cost, which are examined. The optimization method developed in the study is expected to support engineers in determining the optimum lifting equipment management

    Segmentation of the Retinal Vasculature within Spectral-Domain Optical Coherence Tomography Volumes of Mice

    Full text link
    Automated approaches for the segmentation of the retinal vessels are helpful for longitudinal studies of mice using spectral-domain optical coherence tomography (SD-OCT). In the SD-OCT volumes of human eyes, the retinal vasculature can be readily visualized by creating a projected average intensity image in the depth direction. The created projection images can then be segmented using standard approaches. However, in the SD-OCT volumes of mouse eyes, the creation of projection images from the entire volume typically results in very poor images of the vasculature. The purpose of this work is to present and evaluate three machine-learning approaches, namely baseline, single-projection, and all-layers approaches, for the automated segmentation of retinal vessels within SD-OCT volumes of mice. Twenty SD-OCT volumes (400 × 400 × 1024 voxels) from the right eyes of twenty mice were obtained using a Bioptigen SD-OCT machine (Morrisville, NC) to evaluate our methods. The area under the curve (AUC) for the receiver operating characteristic (ROC) curves of the all-layers approach, 0.93, was significantly larger than the AUC for the single-projection (0.91) and baseline (0.88) approach with p < 0.05

    Ballistic dynamics of a convex smooth-wall billiard with finite escape rate along the boundary

    Full text link
    We focus on the problem of an impurity-free billiard with a random position-dependent boundary coupling to the environment. The response functions of such an open system can be obtained non-perturbatively from a supersymmetric generating functional. The derivation of this functional is based on averaging over the escape rates and results in a non-linear ballistic σ\sigma -model, characterized by system-specific parameters. Particular emphasis is placed on the {}``whispering gallery modes'' as the origin of surface diffusion modes in the limit of large dimensionless conductance.Comment: 12 pages, no figure
    • …
    corecore