25,877 research outputs found

    Quantum fields near phantom-energy `sudden' singularities

    Full text link
    This paper is committed to calculations near a type of future singularity driven by phantom energy. At the singularities considered, the scale factor remains finite but its derivative diverges. The general behavior of barotropic phantom energy producing this singularity is calculated under the assumption that near the singularity such fluid is the dominant contributor. We use the semiclassical formula for renormalized stress tensors of conformally invariant fields in conformally flat spacetimes and analyze the softening/enhancing of the singularity due to quantum vacuum contributions. This dynamical analysis is then compared to results from thermodynamical considerations. In both cases, the vacuum states of quantized scalar and spinor fields strengthen the accelerating expansion near the singularity whereas the vacuum states of vector fields weaken it.Comment: 6 pages RevTe

    Strongly interacting neutrinos as the highest energy cosmic rays

    Get PDF
    We show that all features of the ultrahigh energy cosmic ray spectrum from 10^{17} eV to 10^{21} eV can be described with a simple power-like injection spectrum of protons under the assumption that the neutrino-nucleon cross-section is significantly enhanced at center of mass energies above \approx 100 TeV. In our scenario, the cosmogenic neutrinos produced during the propagation of protons through the cosmic microwave background initiate air showers in the atmosphere, just as the protons. The total air shower spectrum induced by protons and neutrinos shows excellent agreement with the observations. A particular possibility for a large neutrino-nucleon cross-section exists within the Standard Model through electroweak instanton-induced processes.Comment: 8 pages, 4 figures, talk given at Beyond the Desert '03, Castle Ringberg, 9-14 June, 200

    F-15 flight flutter test program

    Get PDF
    The modes to be observed during the F-15 flight flutter test program were selected on the basis of the results of analytical studies, wind tunnel tests, and ground vibration tests. The modes (both symmetrical and antisymmetrical) tracked on this basis were: fin first bending, fin torsion, fin tip roll, stabilator bending, stabilator pitch, boom lateral bending, boom torsion, boom vertical bending, wing first bending, wing second bending, wing first torsion, outer wing torsion, and aileron rotation. Data obtained for these various modes were evaluated in terms of damping versus airspeed at 1525 m (5000 ft), damping versus altitude at the cross-section Mach numbers (to extrapolate to the damping value to be expected at sea level), and flutter boundaries on the basis of flutter margin of various modal pairs representing potential flutter mechanisms. Results of these evaluations are summarized in terms of minimum predicted flutter margin for the various mechanisms

    On the origin of cold dark matter halo density profiles

    Get PDF
    N-body simulations predict that CDM halo-assembly occurs in two phases: 1) a fast accretion phase with a rapidly deepening potential well; and 2) a slow accretion phase characterised by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM halos of the NFW form and provides physical insight into the properties of the mass accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropised by fluctuations in the gravitational potential during the fast accretion phase, we show that gravitational collapse in this phase leads to an inner profile rho(r) ~ r^{-1}. Slow accretion onto an established potential well leads to an outer profile with rho(r) ~ r^{-3}. The concentration of a halo is determined by the fraction of mass that is accreted during the fast accretion phase. Using an ensemble of realistic mass accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time, and hence the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N-body simulations. Using a simple analytic model that captures much of the important physics we show that the inner r^{-1} profile of CDM halos is a natural result of hierarchical mass assembly with a initial phase of rapid accretion.Comment: Accepted for publication in MNRAS, references added, 11 pages, 8 figure

    On Fast Linear Gravitational Dragging

    Full text link
    A new formula is given for the fast linear gravitational dragging of the inertial frame within a rapidly accelerated spherical shell of deep potential. The shell is charged and is electrically accelerated by an electric field whose sources are included in the solution.Comment: 4 pages, 1 figur

    On the Evolutionary History of Stars and their Fossil Mass and Light

    Get PDF
    The total extragalactic background radiation can be an important test of the global star formation history (SFH). Using direct observational estimates of the SFH, along with standard assumptions about the initial mass function (IMF), we calculate the total extragalactic background radiation and the observed stellar density today. We show that plausible SFHs allow a significant range in each quantity, but that their ratio is very tightly constrained. Current estimates of the stellar mass and extragalactic background are difficult to reconcile, as long as the IMF is fixed to the Salpeter slope above 1 Msun. The joint confidence interval of these two quantities only agrees with that determined from the allowed range of SFH fits at the 3-sigma level, and for our best-fit values the discrepancy is about a factor of two. Alternative energy sources that contribute to the background, such as active galactic nuclei (AGN), Population III stars, or decaying particles, appear unlikely to resolve the discrepancy. However, changes to the IMF allow plausible solutions to the background problem. The simplest is an average IMF with an increased contribution from stars around 1.5--4 Msun. A ``paunchy'' IMF of this sort could emerge as a global average if low mass star formation is suppressed in galaxies experiencing rapid starbursts. Such an IMF is consistent with observations of star-forming regions, and would help to reconcile the fossil record of star formation with the directly observed SFH.Comment: 21 pages, 7 figures, 3 tables; submitted to Monthly Notice

    Bayesian inferences of galaxy formation from the K-band luminosity and HI mass functions of galaxies: constraining star formation and feedback

    Full text link
    We infer mechanisms of galaxy formation for a broad family of semi-analytic models (SAMs) constrained by the K-band luminosity function and HI mass function of local galaxies using tools of Bayesian analysis. Even with a broad search in parameter space the whole model family fails to match to constraining data. In the best fitting models, the star formation and feedback parameters in low-mass haloes are tightly constrained by the two data sets, and the analysis reveals several generic failures of models that similarly apply to other existing SAMs. First, based on the assumption that baryon accretion follows the dark matter accretion, large mass-loading factors are required for haloes with circular velocities lower than 200 km/s, and most of the wind mass must be expelled from the haloes. Second, assuming that the feedback is powered by Type-II supernovae with a Chabrier IMF, the outflow requires more than 25% of the available SN kinetic energy. Finally, the posterior predictive distributions for the star formation history are dramatically inconsistent with observations for masses similar to or smaller than the Milky-Way mass. The inferences suggest that the current model family is still missing some key physical processes that regulate the gas accretion and star formation in galaxies with masses below that of the Milky Way.Comment: 17 pages, 9 figures, 1 table, accepted for publication in MNRA

    The growth of galaxies in cosmological simulations of structure formation

    Get PDF
    We use hydrodynamic simulations to examine how the baryonic components of galaxies are assembled, focusing on the relative importance of mergers and smooth accretion in the formation of ~L_* systems. In our primary simulation, which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark matter universe, the space density of objects at our (64-particle) baryon mass resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by accretion rather than by mergers. At the redshift of peak mass growth, z~2, accretion dominates over merging by about 4:1. The mean accretion rate per galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is about 2:1. We cannot distinguish truly smooth accretion from merging with objects below our mass resolution threshold, but extrapolating our measured mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that sub-resolution mergers would add relatively little mass. The global star formation history in these simulations tracks the mass accretion rate rather than the merger rate. At low redshift, destruction of galaxies by mergers is approximately balanced by the growth of new systems, so the comoving space density of resolved galaxies stays nearly constant despite significant mass evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1 agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift surveys.Comment: Submitted to ApJ, 35 pp including 15 fig

    Drived diffusion of vector fields

    Get PDF
    A model for the diffusion of vector fields driven by external forces is proposed. Using the renormalization group and the ϵ\epsilon-expansion, the dynamical critical properties of the model with gaussian noise for dimensions below the critical dimension are investigated and new transport universality classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and emphasize
    • …
    corecore