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On the origin of cold dark matter halo density profiles

Yu Lu1⋆, H.J. Mo1, Neal Katz1, Martin D. Weinberg1
1 Department of Astronomy, University of Massachusetts, Amherst MA 01003-9305, USA

ABSTRACT

N -body simulations predict that CDM halo-assembly occurs in two phases: 1) a fast
accretion phase with a rapidly deepening potential well; and 2) a slow accretion phase
characterised by a gentle addition of mass to the outer halo with little change in the
inner potential well. We demonstrate, using one-dimensional simulations, that this
two-phase accretion leads to CDM halos of the NFW form and provides physical in-
sight into the properties of the mass accretion history that influence the final profile.
Assuming that the velocities of CDM particles are effectively isotropised by fluctu-
ations in the gravitational potential during the fast accretion phase, we show that
gravitational collapse in this phase leads to an inner profile ρ(r) ∝ r−1. Slow accre-
tion onto an established potential well leads to an outer profile with ρ(r) ∝ r−3. The
concentration of a halo is determined by the fraction of mass that is accreted during
the fast accretion phase. Using an ensemble of realistic mass accretion histories, we
show that the model predictions of the dependence of halo concentration on halo for-
mation time, and hence the dependence of halo concentration on halo mass, and the
distribution of halo concentrations all match those found in cosmological N -body sim-
ulations. Using a simple analytic model that captures much of the important physics
we show that the inner r−1 profile of CDM halos is a natural result of hierarchical
mass assembly with a initial phase of rapid accretion.

Key words: dark matter - large-scale structure of the universe - galaxies: halos -
methods: theoretical

1 INTRODUCTION

In the cold dark matter (CDM) paradigm of structure forma-
tion, most of the cosmic mass is locked in virialised clumps
called dark matter halos. Luminous objects, galaxies and
clusters of galaxies, are assumed to form in the potential
wells of these dark matter halos. High resolution N-body
simulations have shown that the density profiles of CDM
halos can be fairly well described by a universal form,

ρNFW(r) =
4ρs

(r/rs)(1 + r/rs)2
, (1)

where rs is a characteristic radius and ρs is a characteris-
tic density (Navarro, Frenk & White 1996, 1997; hereafter
(NFW). The value of rs is often given in units of the virial
radius and one over that value is referred to as the halo con-
centration. There is still uncertainty about the exact value
of the inner slope. While some simulations indicate that the
inner logarithmic slope may be steeper than the NFW value,
−1 (e.g. Moore et al. 1999, Ghigna et al. 2000; Fukushige &
Makino 1997, 2001, 2003), others give slopes shallower than
−1 (Subramanian, Cen & Ostriker 2000; Taylor & Navarro
2001; Ricotti 2003). Jing & Suto (2000) found that CDM

⋆ E-mail: luyu@astro.umass.edu

halo profiles in their simulations do not have a completely
universal form, with the inner slope changing from system
to system.

Until now, there has not been a natural explanation
for the approximate ‘universal’ profile resulting from the
gravitational collapse of a CDM density field. The pioneer-
ing work by Gunn & Gott (1972) considered the collapse
of uniform spherical perturbations of collisionless cold dark
matter in an expanding background. This simple model ex-
plains some properties of virialised objects, such as their
mean density and size, but does not describe the density
profile of a collapsed object. Subsequently, the spherical col-
lapse model was extended to incorporate realistic initial per-
turbations (e.g. Gott 1975; Gunn 1977; Fillmore & Goldre-
ich 1984; Bertschinger 1985; Hoffman & Shaham 1985; Ry-
den & Gunn 1987; Ryden 1988; Zaroubi & Hoffman 1993).
Bertschinger (1985) and Fillmore & Goldreich (1984) found
that halos have similar asymptotic inner density profiles
with ρ(r) ∝ r−γ and γ ∼ 2, for a wide range of initial
density perturbations. Unfortunately, the inner slope pre-
dicted by such models is much steeper than that found in 3-
dimensional cosmological simulations. A number of authors
(e.g. White & Zaritsky 1992; Ryden 1993; Sikivie et al. 1997;
Subramanian 2000; Subramanian et al. 2000; Hiotelis 2002;
Le Delliou & Henriksen 2003; Shapiro et al. 2004; Barnes et
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al. 2005) noticed that tangential motions of particles may
cause flattening of the inner profiles. N-body simulations
by Huss et al. (1999) and Hansen & Moore (2004) showed
that the inner density profile of a halo is correlated with the
degree of velocity anisotropy. However, none of these has
provided clear dynamical mechanism for the origin of the
‘univeral’ ρ(r) ∝ r−1 inner profile observed in cosmological
N-body simulations.

Lynden-Bell (1967) proposed that, as long as the ini-
tial condition for the collapse is clumpy, a final equilibrium
state with a universal profile may be achieved as a result
of violent relaxation that may cause a complete mixing of
particles in phase space. Numerical simulations have shown
that such collapses indeed produce a universal inner profile
(van Albada 1982), but the relaxation is incomplete, in the
sense that there is still a significant correlation between the
final and initial states of a particle. Tremaine et al. (1986)
provide statistical constraints on equilibria resulting from
violent relaxation. In the cosmic density field predicted by
a CDM model, the perturbations responsible for the for-
mation of dark matter halos are expected to be clumpy,
and so violent relaxation is expected to play some role in
the formation of dark matter halos. However, as shown by
N-body simulations, the density profiles of virialised dark
matter halos do depend on the formation histories of dark
halos (e.g. NFW; Klypin et al. 2001; Bullock et al. 2001;
Eke et al. 2001; Wechsler et al. 2002; Zhao et al. 2003a,b;
Tasitsiomi et al. 2004; Diemand et al. 2005). NFW conjec-
tured that the dependence of halo concentration parameter
on halo mass could be explained by the assembly of more
massive halos at later times than lower-mass halos. Later,
Wechsler et al. (2002) and Zhao et al. (2003a;b) found that
the concentration of a halo depends on the assembly history.
Together, these results suggest that CDM initial conditions
play an important role in determining halo density profiles.

In this paper, we explore the relation between the den-
sity profile and the assembly histories of dark halos in CDM
models. Our goal is to understand the physical processes
that shape the density profiles of CDM halos, further moti-
vated by the recent finding that the mass accretion histories
of CDM halos show remarkable regularity. Based on high-
resolution N-body simulations, the mass accretion history of
a halo in general consists of two distinct phases: an early fast
phase and a later slow phase (Wechsler et al. 2002; Zhao et
al. 2003a,b; Li et al. 2005). As shown in Zhao et al. (2003a),
the fast accretion phase is dominated by major mergers char-
acterised by a rapid deepening of the halo potential. The
slow accretion phase is characterised by only weak changes
in the gravitational potential well. We will demonstrate that
the ‘universal’ NFW profile results from gross properties of
the mass accretion histories of dark matter halos. Using a
simple spherical collapse model, we show that the inner pro-
file is established in the fast accretion phase. Its key features
are rapid collapse (in a small fraction of a Hubble time) with
rapid changes in the potential that may isotropise the ve-
locity field. The outer profile is dominated by particles that
are accreted in the slow-accretion phase onto an existing
central object. Our model incorporates these two phases of
CDM accretion history to explain the appearance of ‘univer-
sal’ density profile in N-body simulations. In the absence of
slow accretion, the outer profile would approach ρ ∝ r−4.

Our findings suggest that mass accretion history plays a
crucial role in structuring halos.

The outline of this paper is as follows. In §2, we briefly
describe CDM halo mass accretion histories, our procedure
for realizing initial conditions for the formation of dark mat-
ter halos, and present our one-dimensional algorithm for
simulating the collapse of dark matter halos. Our simula-
tion results are described in §3. In §4, we use models with
simple power-law initial perturbations to understand how
NFW-like profiles are produced in CDM models. Finally, in
§5, we further discuss and summarise our results.

2 INITIAL CONDITIONS AND METHODS

For a given halo, the mass accretion history specifies how
much mass is added to the halo as a function of time. Nu-
merical simulations and analytical models of halo formation
in CDM models reveal that the mass accretion histories of
CDM halos are remarkably regular. Wechsler et al. (2002)
found that the accretion history of a CDM halos from N-
body simulations can be described roughly by the following
parametric form:

M(a) = M0 exp
[

−acS
(

a0

a
− 1

)]

, (2)

where a is the expansion scale factor of the universe, and M0

is the virial mass of the halo at a final time where a = a0.
The formation history is characterised by a single parame-
ter ac. This characteristic scale factor a = ac is the point
when the logarithmic mass accretion rate, d log M/d log a,
falls below a critical value S = 2 (Wechsler et al. 2002).
Similar results were found by Zhao et al. (2003a; b) using
high-resolution simulations and by van den Bosch (2002)
using extended Press-Schechter theory.

In a cosmological spherical collapse model, the shell col-
lapse time is determined by the mean initial over-density
within the mass shell; the mass within a mass shell collapses
when the average linear over-density (calculated using lin-
ear perturbation theory) reaches δc ≈ 1.686. Therefore, for
a given mass accretion history, we can then construct the
corresponding initial density perturbation profile that re-
produces this history. For a spherical perturbation of mass
M that collapses at a redshift z, its linear over-density at
the initial time zi is given by

δi(M) = 1.686
D(zi)

D(z)
, (3)

where D(z) is the linear growth factor. In our calculation,
we use the fitting formula by Carroll et al. (1992),

D(z) =
g(z)

1 + z
(4)

g(z) ≈ 5

2
ΩM (z)

{

Ω
4/7
M (z) − ΩΛ(z)

+

[

1 +
ΩM (z)

2

][

1 +
ΩΛ(z)

70

]}−1

, (5)

where ΩM (z) and ΩΛ(z) are the density parameters of non-
relativistic matter and of the cosmological constant at red-
shift z, respectively. At redshift zi, the radius ri of the sphere
that encloses mass M is

c© 2005 RAS, MNRAS 000, 1–11
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ri(M) =

[

3M

4πρ̄(zi)[1 + δi(M)]

]1/3

, (6)

where ρ̄i(zi) = ρcrit,0ΩM (0)(1 + zi)
3, with ρcrit,0 the criti-

cal density of the universe at z = 0. Assuming that zi is
sufficiently large that the initial collapse is linear, equation
(3) relates the enclosed mass M(z) to its overdensity. Equa-
tion (6) then determines its radius at zi. Choosing a mass
partition M1 < M2 < · · · < MN , one can then determine
the radii r1 < r2 < · · · < rN . We choose equal mass shells
m ≡ Mj+1 − Mj for our simulations. Note that this proce-
dure described by equations (3) and (6) is independent of
the mass scale M0 in equation (2) and, therefore, a single
simulation may be scaled to any value of M0 ex post facto.

We use one-dimensional particle simulations to explore
the dynamical evolution of the collapse for a given mass ac-
cretion history. Note that even though the simulations are
one-dimensional we can include the effects of angular mo-
mentum (see eq. 9 below). With a correction for the cosmo-
logical constant, we approximate the gravitational accelera-
tion of the kth mass shell (particle) by

gk = H2
0ΩΛrk − GMkrk

(r2
k + α2)3/2

(7)

Mk =
∑

rj<rk

mj (8)

where H0 is Hubble’s constant at the present time, ΩΛ is
the density parameter of the cosmological constant, rk is
the radius of the shell, and α is a softening length. In every
simulation, we use a softening length α = 0.0005rv , where
rv is the virial radius of the halo at the present time. This
scale is much smaller than any scale of interest. We assign
each shell a specific angular momentum Jk; Jk ≡ 0 defines
pure radial infall. The effective acceleration including the
centrifugal force is then

ak = gk +
J2

k

r3
k

(9)

Since in spherical symmetry the gravitational force on
a mass shell is determined by the mass enclosed by the mass
shell, we calculate the force by sorting particles according to
their radii. Owing to the finite number of shells, when two
shells cross they experience a gravitational force discontinu-
ity since then the enclosed mass instantly changes. To reduce
such effects, we introduce another type of force softening.
Instead of assuming that each shell is infinitesimally thin,
we assume that it has a constant density with finite thick-
ness, which we choose to be the distance between the inte-
rior and exterior neighbouring shells. Using such a softening
method, crossing shells gradually change their enclosed mass
and hence the gravitational forces change smoothly.

We use a time-symmetric symplectic leapfrog integrator
(Quinn et al. 1997; Springel 2005) to solve the equations of
motion. At each time step, we calculate the dynamical time
for every shell and we choose the next time step to be smaller
than the shortest dynamical time of all the shells, i.e.

∆tdyn = min
k

{

cd

√

5r3
k

2GMk

}

, (10)

where cd is control parameter, which we set to be 0.001. Each
simulation starts from an initial condition, which specifies

Figure 1. The diamonds are the binned density profile of a simu-
lated dark matter halo at z = 0 with Poisson error bars. Particles
are assumed to have pure radial motion in this simulation. Note
that the outer density profile has ρ ∝ r−3, while the inner profile
has ρ ∝ r−2. The dashed curve shows a NFW profile for compar-
ison.

the position and velocity of each particle at a chosen high
redshift. The position for each particle at the initial red-
shift zi follows from the mass accretion history as described
above. The initial velocity consists of two components: the
Hubble expansion vi(M) = ri(M)H(zi) and the peculiar ve-
locity. We use linear perturbation theory to relate the initial
peculiar velocity of a mass shell to δi(M). We start our sim-
ulations at zi = 200, early enough for linear theory to be
valid.

All our simulations assume ΩM = 0.3 and ΩΛ = 0.7. We
use 105 equal mass particles to simulate the formation of a
single dark matter halo, and we have tested that this number
is sufficiently large to achieve numerical convergence over
the scales in which we are interested. In each simulation the
total mass of all the particles is 1.2 times the final virial mass
of the halo at z = 0. The extra mass maintains an ambient
environment to follow the late stages of halo formation. As
a test of our code we have reproduced the self-similar results
of both Fillmore & Goldreich (1984) and Nusser (2001). We
varied the particle number by a factor of 10, both larger and
smaller, and could still satisfactorily reproduce these results.

3 RESULTS

We first consider a model with ac = 0.4 corresponding to
a formation redshift of zc = 1.5 with pure radial motion
(Jk ≡ 0 in eq. 9). The density profile of the halo at z = 0
is shown in Figure 1. The final z = 0 density profile has an
inner logarithmic slope of −2 and an outer slope of −3. The
predicted inner profile is much steeper than a NFW pro-
file, although the model matches a NFW profile in the outer
parts. We find that purely radial collapse simulations with

c© 2005 RAS, MNRAS 000, 1–11
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varying values of ac all produce halo profiles with an inner
logarithmic slopes of −2 and outer slopes of −3. Differing
values of ac affect only the transition radius between these
two slopes; larger values of ac (later formation times) leads
to a larger transition radius, i.e. a lower concentration. Ra-
dial infall model alone cannot reproduce a NFW profile in
the inner parts because it does not accurately represent the
dynamics of fast accretion. The early fast accretion phase of
a halo is dominated by major mergers and the depth of the
potential well associated with the main progenitor deepens
rapidly with time (Zhao et al. 2003a). Frequent scattering
by potential fluctuations in this phase is expected to effec-
tively isotropise the orbits. As a result, dark matter particles
will acquire a significant amount of angular motion as they
are accreted by the halo, which is not included in the purely
radial calculation. However, the radial infall model does ap-
pear to successfully describe accretion from large distances
onto an existing central mass in the slow accretion regime of
halo formation and we will see in §4 that this does explain
the agreement of the model with a NFW density profile in
the outer parts. To simulate the fast accretion process more
accurately using our one-dimensional approach, we consider
a model that includes the effect of isotropic velocity disper-
sions. We trace the motion of each particle assuming pure
radial motion into a radius of Rt, and at this point, we ran-
domly assign a tangential component of velocity to the parti-
cle, keeping the kinetic energy unchanged. As the simulation
evolves further, the angular momentum of each particle is
conserved after an ‘isotropisation’ event. We choose Rt to
be one half of the turn-around radius of each particle. Al-
though this prescription seems somewhat arbitrary, a differ-
ent choice only moderately shifts the radial scale. In detail,
we incorporate this into our isotropisation prescription as
follows. For a given mass shell M , we assume the ratio be-
tween the radial velocity dispersion, σr, and the tangential
velocity dispersion σt, has the form,

σ2
t

σ2
r

= 2

[

1 +
(

Rt

ra

)β
]−1

, (11)

where ra is the characteristic scale of the halo demarcat-
ing fast and slow accretion and β controls the shape of the
anisotropy profile. The radial and tangential velocities are
randomly sampled from Gaussian distributions. The ratio
of these two random numbers are then used to partition the
kinetic energy of the particle into radial and tangential com-
ponents. For mass shells with Rt ≪ ra, the velocity distribu-
tion is nearly isotropic, while for those with Rt ≫ ra radial
orbits dominate. Note that a larger β produces a sharper
transition between radial and isotropic orbits. We take β = 2
as our fiducial model and will describe the effect of changing
the value of β below.

Since Rt is roughly the virial radius of a mass shell, we
take ra = rv(ac), where rv(ac) is the virial radius of the halo
at the transition time between the fast accretion phase and
the slow accretion phase. Figure 2 shows the final halo den-
sity profile of such a simulation. The resulting inner density
profile is much flatter than the ρ ∝ r−2 we find for pure
radial motions, and now over a large range of radius it can
be well fit by a NFW profile. The inner profile is dominated
by particles accreted in the fast accretion regime, and the
shallower profile owes to the non-radial motions of these par-
ticles. These results are not particular to the mass accretion

Figure 2. The density profile of a dark matter halo (diamonds) in
a simulation where particles accreted in the fast accretion phase
are assumed to have isotropic velocity dispersion (see text for
details). The simulated density profile can be fit by a NFW profile
(dashed curve). The dotted curve is the result of the best fit to
the data by equation (12), and the best-fit value for γ is 1.21.
Squares show the density profile for particles that are accreted in
the fast accretion phase, while triangles show the density profile
for particles accreted in the slow accretion phase. Note that the

outer part of the halo profile is dominated by particles in slow
accretion, while the inner profile is dominated by particles in the
fast accretion phase.

history used in this example, and indeed our simulations
with other mass accretion histories (see below) all lead to
similar results.

We check the sensitivity to our velocity structure as-
sumptions by varying the values of the two parameters ra

and β in equation (11). We first consider two alternatives to
the fiducial model ra = rv(ac): ra = 0.5rv(ac) and 2rv(ac)
with fixed β = 2. The density profiles given by these two
models are shown in the left panel of Figure 3. The den-
sity profile changes very little even though the value of ra

changes by a factor of 4. Next, we hold ra fixed at our fidu-
cial value of rv(ac) and vary the value of β from 0.5 to 10.
The resulting density profiles are shown in the right panel
of Figure 3. The final profile is also insensitive to changes in
β.

In summary, if particles accreted in the fast accretion

regime are assumed to have an isotropic velocity dispersion,

we find that the inner slope of the halo density profile always

lies in the range between −1 and −1.2. Apparently, the in-

ner ρ ∝ r−1 profile is a generic result of the fast collapse

phase and the isotropic velocity field generated during such

a collapse.

The results obtained above can be compared to those
obtained earlier by Avila-Reese et al. (1998) and Ascasibar
et al. (2004). These authors examined the density profiles of
dark matter halos produced by spherical collapse in a CDM
density field, assuming that the orbits retain a constant el-

c© 2005 RAS, MNRAS 000, 1–11
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Figure 3. The density profiles for models with different choices of ra and β [see equation (11) for definition]. In the left panel, results
are shown for models where β is fixed to be 2 but ra changes from rv(ac) (diamonds) to 0.5rv(ac) (squares) and 2rv(ac) (triangles). In
the right panel, ra is fixed to be rv(ac) but the value of β changes from 2 (diamonds) to 0.5 (squares) and 10 (triangles). The solid curve
shows a NFW profile, while the dashed curve shows the profile (eqn. 12) with γ = 1.2.

lipticity. These models can produce NFW-like profiles pro-
vided that the constant ellipticity is properly chosen. How-
ever, as we describe in §4, spherical collapse with constant
ellipticity orbits can produce a wide range of inner profiles
depending on initial conditions. A good match between their
models and the NFW profile requires a fine tuning of initial
conditions. Shapiro et al. (2004) also explored the impor-
tance of CDM accretion history using one-dimensional sim-
ulations and very similar arguments to ours. Unfortunately,
they use a fluid approach that solves Jeans-like moments of
the collisionless Boltzmann equation and, presumably, the
elimination of any possible asymmetric velocity distribution
prevented them from finding our ρ ∝ r−1 result.

In contrast to these models, our consideration is based
on realistic CDM halo formation histories. We demonstrate
that, for all such formation histories, the early fast accretion
of dark matter that may effectively generate an isotropic
velocity dispersion leads naturally to ρ ∝ r−1 in the in-
ner parts. Our isotropisation assumption is supported by
the measurement of halo velocity dispersions in cosmologi-
cal N-body simulations, which becomes progressively more
isotropic towards the inner part of dark halos (e.g. Eke
et al. 1998; Coĺin et al. 2000; Fukushige & Makino 2001;
Hansen & Moore 2004).

We can study the dependence of halo structure on
the ‘formation time’, characterised by ac, using our one-
dimensional simulations. We fit the resulting density profiles
both with a NFW profile and one with the following more
general form:

ρ(r) =
ρs

(r/rs)γ [1 + (r/rs)]
(3−γ)

, (12)

Figure 4. Halo concentration as a function of ac, which char-
acterises the halo formation time. Triangles show the results
where simulated halo profiles are fit with a NFW profile and
the diamonds are the results when fit with equation (12). The
solid curve shows the prediction of a model proposed by Zhao et
al. (2003a) based on cosmological N-body simulations, while the
dashed curve shows the model prediction given by Wechsler et
al. (2002).

c© 2005 RAS, MNRAS 000, 1–11
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where γ is the inner slope of the profile. Figure 4 shows
the best fit value of the concentration parameter, defined
as c ≡ rv/rs, as a function of ac. As one can see, halos
with lower ac, i.e. earlier formation times, are more con-
centrated. However, for halos that are still in the fast ac-
cretion phase, i.e. with ac > 1, the concentration is inde-
pendent of ac. The solid curve shows the concentration-
formation time relation obtained by Zhao et al. (2003a;b)
using high-resolution N-body simulations. Our results as-
suming a NFW profile match this relation extremely well.
The dashed line shows the model proposed by Wechsler et
al. (2002). This model agrees well with our results for ac < 1,
but underestimates the concentration for halos with ac > 1.
We refer readers to Zhao et al. (2003a;b) for a detailed
discussion about the discrepancy between their results and
those obtained by Wechsler et al. (2002). Since it is known
that the concentration-formation time relation is the ori-
gin of the mass-concentration relation (Wechsler et al. 2002,
Zhao et al. 2003a), our results will also reproduce the mass-
concentration relation (at a given redshift) as well as the
concentration-redshift relation (at fixed mass) found in the
cosmological N-body simulations.

So far, our discussion is based on simulations that as-
sume the smooth accretion history given by equation (2).
Although this smoothed form is a good description of the
accretion history averaged over an ensemble of simulated
dark halos, an individual accretion history exhibits details
that are not described by equation (2). In some cases, equa-
tion (2) even fails to describe the overall shape of the mass
accretion history. We show such an example in the left panel
of Figure 5. A fit that emphasises the accretion history be-
fore the big jump at a = 0.45, shown by the short dashed
curve, differs from a fit that emphasises the history after
that time. To see how such differences affect the density
profiles, we carried out one-dimensional simulations using
realistic halo accretion histories generated by PINOCCHIO,
a Lagrangian code developed by Monaco et al. (2002). The
statistical properties of the mass accretion histories gener-
ated using this code agrees with those obtained using cos-
mological N-body simulations (Li et al. 2005). The resulting
simulated halo density profiles can all be well described by
the NFW form. For many cases where equation (2) is a good
fit to the overall accretion history, the simulated density pro-
files using real accretion histories are very similar to those
using the corresponding fits with equation (2). Even for cases
where the accretion history is poorly described by equation
(2), as the one shown in Figure 5a, the final halo profile
can still be well fit using a NFW form (see Fig. 5b). In such
cases, however, the formation time defined using equation
(2) is uncertain.

The difference in the detailed mass accretion history in-
troduces a scatter in the distribution of the concentration
parameter c (Wechsler et al. 2002). If the density profile is
determined by its mass accretion history, then we should
be able to reproduce the distribution of c using a random
sample of realistic mass accretion histories. To perform this
experiment, we have randomly chosen 50 mass accretion his-
tories generated with PINOCCHIO for halos with masses in
the range 1011−1012 M⊙. These mass accretion histories are
used to generate initial conditions for our one-dimensional
simulations. Figure 6 shows the distribution of the concen-
tration parameter, obtained by fitting the simulated profiles

Figure 6. The histogram shows the distribution of halo concen-
tration obtained from an ensemble of 50 randomly chosen mass
accretion histories for halos with masses in the range 1011 M⊙ to
1012 M⊙ at the present time. The solid curve shows a log-normal
distribution with a median equal to 15.0 and a dispersion (in
log c) equal to 0.12.

with the NFW form. The distribution can be roughly de-
scribed by a log-normal, in agreement with the cosmological
N-body results (e.g. Jing 2000; Bullock et al. 2001). The dis-
persion in log c, σ = 0.12, is also very close to that found in
cosmological N-body simulations (e.g. Wechsler et al. 2002),
reinforcing our finding that the density profile of a halo is
largely determined by its mass accretion history.

4 WHAT DETERMINES THE DENSITY

PROFILES OF DARK MATTER HALOS?

In the last section, we have shown that many of the struc-
tural properties of CDM halos found in cosmological N-body
simulations can be understood in terms of halo mass accre-
tion histories. However, why does gravitational collapse with
such initial conditions always produce halo profiles that fol-
low a universal form? Is the universal profile a result of the
fact that the initial conditions represented by CDM mass
accretion histories are special, or is it more generic in the
sense that it can be produced by a wide range of initial
conditions?

To answer this question, we consider the collapse of
generic initial perturbations with the form

δM(r)

M(r)
∝ M(r)−ǫ , (13)

where ǫ is a constant that controls the mass accretion rate.
Because a mass shell collapses when δM/M ≈ 1.68, the
mass accretion history implied by equation (13) is M(z) ∝
D1/ǫ(z), where D(z) is the linear growth factor. Since the
circular velocity of a halo Vc is related to its mass, M ∼
V 3

c /H(z), where H(z) is the Hubble constant at redshift z,
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Figure 5. The diamonds in panel (a) show a mass accretion history that cannot be well fit using equation (2). The long (short) dashed
curve is the result of fit that emphasises the recent (past) history at a > 0.45 (a < 0.45). The solid curve represents a compromise
between the recent and past histories. The halo profiles corresponding to the actual mass accretion history and these three possible fits
are shown in panel (b).

we can write Vc(z) ∝ H1/3(z)D1/3ǫ(z). For simplicity, we
consider an Einstein-de Sitter universe. In this case, D ∝
H−2/3, and therefore

M ∝ H−2/3ǫ , Vc ∝ H(1−2/3ǫ)/3 . (14)

Note that V 2
c is a measure of the depth of potential well as-

sociated with the halo. For ǫ = 1/6, Vc ∝ H−1 (M ∝ H−4).
Therefore, ǫ = 1/6 separates the isotropisation regime from
calm accretion, i.e. Vc changes by an order of unity or more
in a Hubble time for ǫ < 1/6. For ǫ = 2/3, M ∝ H−1

(Vc = constant) and, similarly, ǫ = 2/3 separates fast ac-
cretion from slow accretion in terms of the mass accretion
rate. For ǫ → 0, perturbations on different mass scales have
the same amplitude, and all mass scales collapse simultane-
ously, leading to fast increases in both mass and potential
well depth. In contrast, for ǫ ≫ 1 the perturbation ampli-
tude declines rapidly with mass scale, hence M increases lit-
tle while the potential well decays as the universe expands.
This allows us to study cases with vastly different collapse
histories by changing the value of ǫ over a large range.

In an Einstein-de Sitter universe where the expansion
factor a is a power law of time, the collapse of perturba-
tions described by equation (13) admits similarity solutions.
Assuming spherical symmetry and pure radial motion, Fill-
more & Goldreich (1984) show that the collapse develops an
asymptotic density profile ρ ∝ r−γ in the inner region, with
γ = 2 for 0 < ǫ ≤ 2/3, and γ = 9ǫ/(1+3ǫ) for ǫ > 2/3. These
solutions are shown in Figure 7 as the long-dashed curve.
Self-similar models can also be constructed for non-radial
motions (Nusser 2001). The specific angular momentum of
a particle can be specified as

J = J
√

GMtarta , (15)

Figure 7. The relation between the inner logarithmic slope, γ
(ρ ∝ r−γ), as a function of the exponent of the initial pertur-
bation defined in equation (13). The long dashed curve shows
the solution of the model with pure radial motion and the dot-
ted curve shows the solution when all particles have the same
J . The solution with an isotropic velocity dispersion is shown as
the solid curve, and is compared with the result obtained directly
from numerical calculations (crosses). All the three curves overlap
for ǫ ≥ 2/3.
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where rta is the turnaround radius of the particle, and
Mta is the mass interior to rta. If J is the same con-
stant for all particles, the problem admits similarity solu-
tions and the asymptotic inner slope of the density profile
is γ = 9ǫ/(1 + 3ǫ) for all ǫ > 0 (Nusser 2001). This solution
is shown as the dotted curve in Figure 7. For ǫ ≥ 2/3, this
solution is the same as that for the model with pure radial
infall. The asymptotic value of γ is 0 as ǫ → 0. The depen-
dence of γ on ǫ for a constant J is steep near γ ∼ 1. Thus,
to produce a NFW inner slope in this model requires tuned
initial conditions.

For our models in §3, the velocity dispersion of particles
in the early collapse phase is isotropic. Thus, the quantity
J has the following distribution at fixed energy:

P (J ) =
J√

1 − J 2
. (16)

For the slow accretion phase, we expect the results of pure
radial motion to obtain. Thus, for ǫ ≥ 2/3, the asymp-
totic slope is γ = 9ǫ/(1 + 3ǫ). For ǫ < 2/3, we can also
use a simple model to understand the results obtained in
the last section. Consider all particles with a given J . In
general, we can write the final density profile of these par-
ticles as ∆ρJ (r) ∝ (∆MJ /r3

J )F (r/rJ ), where ∆MJ is
the total mass of particles with J in the range J ± ∆J ,
and rJ is a characteristic scale in the density profile. The
quantity ∆MJ/r3

J is the density scale. Since the only scale
in the problem is the current turnaround radius rout, and
since non-radial motion is expected to be important only
for r ≪ J rout, we expect rJ ∝ J rout. Thus,

∆ρJ (r) ∝ M

r3
out

P (J )∆J
J 3

F
(

r

J rout

)

. (17)

If we neglect the interaction between mass shells of different
J , the total density can be written as

ρ(r) =
∑

∆ρJ (r) ∝ M

r3
out

∫ 1

0

P (J )dJ
J 3

F
(

r

J rout

)

. (18)

On scales where the effect of angular momentum is im-
portant, i.e. r ≪ J rout, the density profile is expected to
be F (r) ∝ r−9ǫ/(1+3ǫ). Conversely, for r ≫ J rout the parti-
cles are in nearly radial motion and one expects F (r) ∝ r−2

(for ǫ < 2/3). Hence, we may approximate the form of F as
F (x) = 1/[x2 + x9ǫ/(1+3ǫ)]. Inserting this and equation (16)
into equation (18), we obtain

ρ(r) ∝ M

r3
out

rout

r
Q(ǫ, rout/r) , (19)

where

Q (ǫ, rout/r) =

∫ π/2

0

(rout/r)dθ

1 + [(rout/r) sin θ]α
, (20)

with

α ≡ 2 − 3ǫ

1 + 3ǫ
. (21)

The inner density profile is given by the r dependence of
Q for r/rout → 0. The solid curve in Figure 7 shows the
resulting γ-ǫ relation. The characteristics of this relation can
be understood as follows. For ǫ < 1/6, then α > 1. The
integration in Q is dominated by small θ, and so we can
replace sin θ by θ. The function Q is independent of r and
ρ ∝ r−1. For 1/6 < ǫ < 2/3, then 0 < α < 1 and the

integration is now dominated by sin θ > r/rout. The function
Q ∝ rα−1 and, therefore, γ = 9ǫ/(1 + 3ǫ). This relation
between γ and ǫ holds also for ǫ > 2/3, as discussed above.

To check the accuracy of the above simple model, we
use a numerical calculation to solve for the inner density
profile as a function of ǫ. For any radius r, the total mass
within it can be written in two parts,

mT (r) = mp(r) + mt(r) . (22)

Here mp is the mass of all particles with apocenter smaller
than r. We call these particles ‘permanent’ contributors be-
cause they always contribute to mT (r). The mass mt in the
above equation is the contribution of particles with apocen-
ter ra larger than r but with a smaller pericenter rb. These
are ‘temporary’ contributors because they only spend part
of their orbital times within r. Let P (r|rk) be the fraction
of time that a ‘temporary’ particle with turnaround radius
rk spends inside radius r. The total mass contributed by
temporary particles can be written as

mt(r) =

∫

rb<r<ra

P (r|rk)dm(rk), (23)

where the measure includes all orbits that pass through the
surface at r. By definition,

P (r|rk) =

∫ ra

r

dr′

vk(r′)

/

∫ ra

rb

dr′

vk(r′)
(24)

where vk(r′) is the radial velocity of a particle with turn-
around radius rk at a radius r′. Note that vk(r) as a function
of r depends on the current mass profile mT (r), and so the
mass profile has to be solved by iteration. The radial velocity
can be written as

vk(r) =
√

2
[

Ek − Φ(r) − J2
k/(2r2)

]1/2
(25)

where Ek and Φ are, respectively, the total energy and grav-
itational potential of the particle, and Jk is the specific an-
gular momentum. The increase of mass within the apocenter
of a particle can change the orbit of the particle. Thus, we
must recompute such changes at each step of the iteration.
Assuming that angular momentum is conserved, the apoc-
enter ra of a particle after a given iteration is related to the
apocenter r′a before by mT (ra)ra = m′

T (r′a)r′a, where m′
T

and mT are the mass profiles before and after the iteration
step. The iteration starts from an initial condition where
each particle is at its turnaround radius, and we denote the
corresponding profile by Mta(rta). Since the turnaround ra-
dius rta of a mass shell is related to its initial radius ri by
rta ∝ ri(δM/M)−1 in an Einstein-de Sitter universe and
since M ∝ r3

i , one can show that

Mta(rta) ∝ rn
ta , n = 3/(3ǫ + 1) . (26)

We have applied the above numerical calculation to
models with pure radial infall and models where J is the
same for all mass shells. The results match those given by
the self-similarity solutions. The crosses in Figure 7 show
the γ–ǫ results for this calculation using an isotropic veloc-
ity dispersion given by equation (16). The numerical results
match the simple analytical model presented above remark-
ably well. We have also applied our one-dimensional code
to this model and the results are similar to those obtained
here.
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One important feature in the γ-ǫ relation predicted by
this model is that γ ≈ 1 for all 0 < ǫ <∼ 1/6. For a pertur-
bation with ǫ in this range, the circular velocity of the halo
increases rapidly with time, with a timescale that is shorter
than a Hubble time. In this case, not only can particles with
small apocenters (low orbital energies) reach the inner part
of the halo, but also can many particles with large apoc-
enters (high orbital energies) and small angular momenta.
Velocity isotropisation mixes these orbits, resulting in γ ≈ 1
as we have demonstrated. For ǫ > 1/6 the gravitational po-
tential is changing gradually and particles joining the halo
have a similar energy and orbital shape J . The resulting pro-
file can then be described by the self-similar solution that
assumes the same orbital shape for all particles and γ be-
comes larger than one. Note that an inner logarithmic slope
of approximately −1 results from a fast collapse and orbit
isotropisation and that both conditions are required to pro-
duce such an inner slope. If the collapse is fast (ǫ <∼ 1/6) but
the velocity dispersion is not isotropic, the inner slope can
be as shallow as 0 (for constant J ) and as steep as −2 (for
radial infall). If the velocity dispersion is isotropic, but the
mass accretion rate is small, i.e. ǫ > 1, the inner slope can
be much steeper than −1.

The identification of this mechanism not only explains
the approximate universality of the inner CDM halo slopes
but also describes the variance observed in N-body simula-
tions. Gravitational collapse starts on small scales in a hi-
erarchical model such as CDM. Deep dark-matter potential
wells are created by subsequent non-linear gravitational col-
lapse, but the potential well associated with a halo cannot
deepen significantly during the slow accretion phase when
the accretion time scale is longer than a Hubble time (Zhao
et al. 2003a). Therefore, all halos must have gone through
a phase of rapid accretion to establish their potential wells,
even though different halos may have different mass accre-
tion histories. Also, as shown in Li et al. (2005), the phase of
rapid mass accretion is dominated by major mergers, which
may effectively isotropise the velocity field. These are the
two ingredients that are required to produce a ρ ∝ r−1 in-
ner profile, and explain why such a inner profile results for
halos with vastly different formation histories. If the poten-
tial well of a halo is established at early times, the mass
contained in the r−1 profile will be small, and the halo will
have a high concentration since most of the mass accreted
slowly. However, if a halo establishes its potential well re-
cently, much of its mass will be in the r−1 profile, and the
halo will have a low concentration. This correlation between
halo concentration and the time of potential well formation
matches cosmological N-body simulations (e.g. Zhao et al.
2003a;b). In extreme cases where the mass involved in the
fast accretion is too small to be seen, we expect an inner
profile steeper than r−1.

So far we have only considered the origin of the inner
r−1 profile. What about the outer r−3 form in the universal
profile? Consider a shell of mass M and of an initial radius
ri. Suppose this mass shell collapses at a time t to a radius
r. Assuming an Einstein-de Sitter Universe and neglecting
the effect of shell crossing, we have r ∝ ri/δi(M) and t ∝
ti/δi(M)3/2. Eliminating δi(M) in these two relations and
using M ∝ r3

i we obtain r ∝ M1/3t2/3. Thus, the density
profile can be written as

ρ(r) =
1

4πr2

dM

dt

(

dr

dt

)−1

∝ M

r3

µ

2 + µ
, (27)

where µ ≡ d ln M/d ln t. Now let us write the mass in two
parts, M = Me + ∆M , where Me is the mass of the halo at
t−∆t, while ∆M is the mass accreted between time t−∆t
and t. If ∆M increases as a power law of t, and if ∆M ≪ Me,
then ρ ∝ r−3. Since a mass shell settles into an equilibrium
state over several dynamical times, the relevant scale for ∆t
is the dynamical time of the system. Thus, if there is a period
of slow accretion, but where the total accreted mass is much
smaller than the mass that has collapsed into the halo, an
outer density profile with ∼ r−3 results. However, the above
argument also suggests that the outer density profile can
change from halo to halo, depending on the mass accretion
rate at the final stage of halo formation. For example, if M
continues to grow as described by equation (2) eventually a
density profile with ρ ∝ r−4 in the outer parts will result.

To demonstrate such a dependence of the outer profile
on mass accretion history, we have carried out 1-D simu-
lations for three cases with different recent mass accretion
histories. These mass accretion histories are shown in the
left panel of Figure 8, and the resulting logarithmic slopes
versus r are shown in the right panel. This figure shows
that while halos with typical mass accretion histories have
ρ ∝ r−3 outer density profiles, halos with slower accretion
rates in the recent past (shown by the dashed and dotted
curves) have steeper outer profiles. Therefore, the outer r−3

profile is not universal but a consequence of the form of mass
accretion history of typical CDM halos and in the currently
accepted cosmological model all halos will have a r−4 outer
profile in the distant future.

5 SUMMARY AND DISCUSSION

We have constructed a simple model that reproduces many
of the properties of the CDM halo population. There are
two essential ingredients: 1) a two-phase accretion history
beginning with rapid accretion and potential-well deepening
followed by slow accretion with little change in the poten-
tial well; and 2) isotropisation of orbits during the phase
of rapid growth. The density profiles obtained from various
mass accretion histories all fit the NFW form. Our model
also reproduces the correlation between the concentration
and formation time observed in cosmological N-body sim-
ulations. In particular, the model predicts a roughly con-
stant concentration, c ∼ 5, for all halos that are still in
the fast accretion phase, matching the results obtained by
Zhao et al. (2003a;b). Combined with an ensemble of real-
istic mass accretion histories parametrised from cosmologi-
cal CDM simulations, the model reproduces the dependence
of halo concentration on halo mass and the distribution of
halo concentrations measured in these same cosmological N-
body simulations. Our results demonstrate that the struc-
tural properties of CDM halos are largely determined by
their mass accretion histories.

We can recover many of these results using a simple
analytic model. Our model begins with scale-free perturba-
tions of the form δM(r)/M(r) ∝ M(r)−ǫ in an Einstein-de
Sitter universe. Assuming an isotropic velocity dispersion,
we find that the inner profile produced by the collapse of
such perturbations is always a power law, ρ(r) ∝ r−γ , with
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Figure 8. The left panel shows three mass accretion histories that have different accretion rates in the recent past. The right panel
shows, as a function of radius, the logarithmic slope of the density profile generated with each of these three mass accretion histories.
Note that the outer slope can be as steep as −4 for a halo whose recent mass accretion rate is very small (dotted and dashed curves).

γ = 1 for 0 < ǫ < 1/6, and γ = 9ǫ/(1 + 3ǫ) for ǫ > 1/6. A
model with 0 < ǫ < 1/6 has a rapidly deepening potential
leading to orbit isotropy. This produces a shallower profile
than a purely radial model. Assuming non-radial orbits of
constant shape yields self-similar models but with a large
range of possible inner slopes. The mixture resulting from
isotropisation converges to a single inner slope ρ ∝ r−1. This
suggests that the inner r−1 profile of CDM halos is a nat-
ural result of hierarchical models, where the potential well
associated with a halo has to be built through a phase of
rapid and violent accretion in which potential fluctuations
are expected to effectively isotropise the velocities of CDM
particles.

As mentioned in the introduction, a number of authors
have previously noticed that tangential motions of parti-
cles can cause flattening in the inner density profile of dark
matter halos (e.g. White & Zartisky 1992; Ryden 1993;
Sikivie et al. 1997; Subramanian et al. 2000; Subramanian
2000; Hiotelis 2002; Le Delliou & Henriksen 2003; Shapiro
et al. 2004; Barnes et al. 2005). Applying the collisionless
Boltzmann equation to self-similar gravitational collapse,
Subramanian (2000) and Subramanian et al. (2000) demon-
strated that tangential velocities are required to obtain an
inner profile that is shallower than that of a singular isother-
mal sphere. They suggested that an appropriate mixture of
radial and tangential velocities may produce an inner r−1

profile. However, these authors did not propose a specific
model that predicts such a profile. Furthermore, as we have
shown in this paper, isotropic velocity dispersion alone is not
sufficient for generating an inner r−1 profile; rapid accretion
with a quickly deepening potential well is also required in
our model. Thus, although our explanantion about the inner
density profile of dark matter halos is related to those pre-

sented in these earlier analyses, it provides additional phys-
ical insight into the problem, in particular in connection to
the properties of the mass accretion history that influence
the final density profile.

Since our model only relies on the mass accretion his-
tory and orbit isotropisation to explain the origin of NFW
profiles, it naturally explains why collapses with artificially
reduced substructure (Moore et al. 1999) also lead to the
universal profile, even when the initial condition is as smooth
as three intersecting plane waves (Shapiro et al. 2004). How-
ever, if it is so smooth that the orbits are not isotropised then
a steeper central slope may result. Note that although our
explanation depends on different mass accretion histories it
does not explicitly depend on the dynamical friction and
tidal distribution of the substructures that makes up the
actual mass accretion in cosmological N-body simulations
(e.g. Dekel et al. 2003).

It is remarkable that our one-dimensional simulations
with their two simple ingredients reproduce the structural
features of the full three-dimensional simulations. In retro-
spect, this result is consistent with the physical nature of
hierarchical formation. Because dark-matter halos are ex-
tended, even equal mass mergers are relatively quiescent,
their mutual orbits slowly decaying by dynamical friction
and ending with a low velocity merger, tidal dissolution, and
phase mixing. Such events are likely to produce sufficient
scattering to yield isotropisation but not as violent as envi-
sioned by Lynden-Bell (1967). Therefore, once we have the
two necessary ingredients, the final equilibrium profile may
not be sensitive to the exact way in which the system settles
into its final equilibrium configuration. Zhao et al. (2003a)
show that a significant correlation still exists between the
final and initial binding energies even for particles that are
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accreted in the fast accretion phase based on 5 halos in their
high-resolution simulations. Reinforcing this point, we also
find that the final energy of a particle is correlated with its
initial energy, and hence the energy distribution of particles
is determined by the initial conditions rather than by com-
plete relaxation. The match between our one-dimensional
model and the three-dimensional cosmological simulations
suggests that violent relaxation might not play an impor-
tant role in redistributing the energies of particles except
through isotropising the velocity field.
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