1,759 research outputs found
Double-layer shocks in a magnetized quantum plasma
The formation of small but finite amplitude electrostatic shocks in the
propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external
magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma.
Such shocks are seen to have double-layer (DL) structures composed of the
compressive and accompanying rarefactive slow-wave fronts. Existence of such DL
shocks depends critically on the quantum coupling parameter associated with
the Bohm potential and the positron to electron density ratio . The
profiles may, however, steepen initially and reach a steady state with a number
of solitary waves in front of the shocks. Such novel DL shocks could be a good
candidate for particle acceleration in intense laser-solid density plasma
interaction experiments as well as in compact astrophysical objects, e.g.,
magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E
The impact of the spacecraft system SĂ„NGER on the composition of the middle atmosphere
A two-dimensional chemical model and physical considerations are used to estimate the impact of the spacecraft system SÄNGER on stratospheric and mesospheric ozone in relation to other spacecraft and other anthropogenic perturbations. Perturbations of middle atmospheric NOy H2O and H2 concentrations, and their impact on the radiative balance of the atmosphere, including contrail formation, are discussed. It is found, that in case of about 24 launches per year the perturbations due to SÄGER are about negligible on a global scale. However, if a SÄGER version would be used for a hypersonic fleet of commercial aircraft a serious ozone depletion is predicted. © 1992 by Wax Planck Society
Quantum effects in linear and non-linear transport of T-shaped ballistic junction
We report low-temperature transport measurements of three-terminal T-shaped
device patterned from GaAs/AlGaAs heterostructure. We demonstrate the mode
branching and bend resistance effects predicted by numerical modeling for
linear conductance data. We show also that the backscattering at the junction
area depends on the wave function parity. We find evidence that in a non-linear
transport regime the voltage of floating electrode always increases as a
function of push-pull polarization. Such anomalous effect occurs for the
symmetric device, provided the applied voltage is less than the Fermi energy in
equilibrium
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors
In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we
have shown that the lifting of the electron spin degeneracy in the integer
quantum Hall effect at high filling factors should be interpreted as a
magnetic-field-induced Stoner transition. In this work, we extend the analysis
to investigate the influence of the single-particle Zeeman energy on the
quantum Hall ferromagnet at high filling factors. The single-particle Zeeman
energy is tuned through the application of an additional in-plane magnetic
field. Both the evolution of the spin polarization of the system and the
critical magnetic field for spin splitting are well described as a function of
the tilt angle of the sample in the magnetic field.Comment: Published in Phys. Rev.
Finding binaries from phase modulation of pulsating stars with \textit{Kepler}: VI. Orbits for 10 new binaries with mischaracterised primaries
Measuring phase modulation in pulsating stars has proved to be a highly
successful way of finding binary systems. The class of pulsating main-sequence
A and F variables known as delta Scuti stars are particularly good targets for
this, and the \textit{Kepler} sample of these has been almost fully exploited.
However, some \textit{Kepler} Scuti stars have incorrect temperatures
in stellar properties catalogues, and were missed in previous analyses. We used
an automated pulsation classification algorithm to find 93 new Scuti
pulsators among tens of thousands of F-type stars, which we then searched for
phase modulation attributable to binarity. We discovered 10 new binary systems
and calculated their orbital parameters, which we compared with those of
binaries previously discovered in the same way. The results suggest that some
of the new companions may be white dwarfs.Comment: 8 pages, 6 figures that make liberal use of colou
Quark spin coupling in baryons - revisited
A direct connection can be made between mixing angles in negative parity
baryons and the spin coupling of constituent quarks. The mixing angles do not
depend on spectral data. These angles are recalculated for gluon exchange and
pion exchange between quarks. For pion exchange the results of Glozman and
Riska are corrected. The experimental data on mixing are very similar to those
derived from gluon exchange but substantially different from the values
obtained for pion exchange.Comment: 10 pages, RevTex; a sign error is corrected, spin-orbit results are
include
Quantum-mechanical calculation of Stark widths of Ne VII n=3, transitions
The Stark widths of the Ne VII 2s3s-2s3p singlet and triplet lines are
calculated in the impact approximation using quantum-mechanical Convergent
Close-Coupling and Coulomb-Born-Exchange approximations. It is shown that the
contribution from inelastic collisions to the line widths exceeds the elastic
width contribution by about an order of magnitude. Comparison with the line
widths measured in a hot dense plasma of a gas-liner pinch indicates a
significant difference which may be naturally explained by non-thermal Doppler
effects from persistent implosion velocities or turbulence developed during the
pinch implosion. Contributions to the line width from different partial waves
and types of interactions are discussed as well.Comment: 8 pages, 3 figures; accepted by Phys. Rev.
- …