396 research outputs found

    Dark State Adiabatic Passage with spin-one particles

    Get PDF
    Adiabatic transport of information is a widely invoked resource in connection with quantum information processing and distribution. The study of adiabatic transport via spin-half chains or clusters is standard in the literature, while in practice the true realisation of a completely isolated two-level quantum system is not achievable. We explore here, theoretically, the extension of spin-half chain models to higher spins. Considering arrangements of three spin-one particles, we show that adiabatic transport, specifically a generalisation of the Dark State Adiabatic Passage procedure, is applicable to spin-one systems. We thus demonstrate a qutrit state transfer protocol. We discuss possible ways to physically implement this protocol, considering quantum dot and nitrogen-vacancy implementations.Comment: 8 pages, 6 figures (some in colour), comments welcom

    Energetics of the Quantum Graphity Universe

    Get PDF
    Quantum graphity is a background independent model for emergent geometry, in which space is represented as a complete graph. The high-energy pre-geometric starting point of the model is usually considered to be the complete graph, however we also consider the empty graph as a candidate pre-geometric state. The energetics as the graph evolves from either of these high-energy states to a low-energy geometric state is investigated as a function of the number of edges in the graph. Analytic results for the slope of this energy curve in the high-energy domain are derived, and the energy curve is plotted exactly for small number of vertices NN. To study the whole energy curve for larger (but still finite) NN, an epitaxial approximation is used. It is hoped that this work may open the way for future work to compare predictions from quantum graphity with observations of the early universe, making the model falsifiable.Comment: 8 pages, 3 figure

    Tuneable plasmonics enabled by capillary oscillations of liquid-metal nanodroplets

    Get PDF
    Plasmonics allows manipulating light at the nanoscale, but has limitations due to the static nature of nanostructures and lack of tuneability. We propose and theoretically analyse a room-temperature liquid-metal nanodroplet that changes its shape, and therefore tunes the plasmon resonance frequency, due to capillary oscillations. We show the possibility to tune the capillary oscillation frequency of the nanodroplet and to drive the oscillations electrically or mechanically. Employed as a tuneable nanoantenna, the nanodroplet may find applications in sensors, imaging, microscopy, and medicine

    Interferometry using spatial adiabatic passage in quantum dot networks

    Full text link
    We show that techniques of spatial adiabatic passage can be used to realise an electron interferometer in a geometry analogous to a conventional Aharonov-Bohm ring, with transport of the particle through the device modulated using coherent transport adiabatic passage. This device shows an interesting interplay between the adiabatic and non-adiabatic behaviour of the system. The transition between non-adiabatic and adiabatic behaviour may be tuned via system parameters and the total time over which the protocol is enacted. Interference effects in the final state populations analogous to the electrostatic Aharonov-Bohm effect are observed.Comment: Version accepted in Phys. Rev. B, 8 pages, 6 figure

    Charge shelving and bias spectroscopy for the readout of a charge-qubit on the basis of superposition states

    Full text link
    Charge-based qubits have been proposed as fundamental elements for quantum computers. One commonly proposed readout device is the single-electron transistor (SET). SETs can distinguish between localized charge states, but lack the sensitivity to directly distinguish superposition states, which have greatly enhanced coherence times compared with position states. We propose introducing a third dot, and exploiting energy dependent tunnelling from the qubit into this dot (bias spectroscopy) for pseudo-spin to charge conversion and superposition basis readout. We introduce an adiabatic fast passage-style charge pumping technique which enables efficient and robust readout via charge shelving, avoiding problems due to finite SET measurement time.Comment: 4 pages, 3 figures, note slightly changed title, replaced with journal versio
    • …
    corecore