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Plasmonics allows manipulating light at the nanoscale, but has limitations due to the static nature of
nanostructures and lack of reconfigurability. We propose and theoretically analyze a room-temperature liquid-
metal nanodroplet that changes its shape, and therefore dynamically reconfigures the plasmon resonance spectrum,
due to capillary oscillations. We show the possibility to control the capillary oscillation frequency of the
nanodroplet and to drive the oscillations electrically or mechanically. Employed as a dynamically reconfigurable
nanoantenna, the nanodroplet may find applications in sensors, imaging, microscopy, and medicine.
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I. INTRODUCTION

Nanoplasmonics paves the way for controlling light at the
subwavelength scale [1]. However, once a metal nanostructure
has been fabricated, its optical characteristics cannot be
changed in a reversible manner, which restricts its potential
applications and does not allow meeting an increasing demand
for tunable, and more broadly, dynamically reconfigurable
optical properties.

Therefore, a large and growing body of research in-
vestigates reconfigurable plasmonic structures such as, e.g.,
optical nanoantennae [2,3]. Dynamic reconfigurability of
nanoantennae has been demonstrated by combining a metal
nanostructure with functional materials such as liquid crystals,
metamaterials, elastomers, semiconductors, phase-changing
media, nonlinear, and magnetooptical materials (for a review
see, e.g., [3–5]). Because of many options in size, material,
and features, nanoantennae have been employed in optical
filters, sensors, switches, on-chip photonic links, sources of
quantum light, and so on, and found applications in imaging,
spectroscopy, microscopy, photovoltaics, and medicine [3–5].

Although the terms “tunable” and “reconfigurable” have
sometimes been employed interchangeably or complemented
one another [6,7], in general “tunable” means the ability
to continuously change the plasmon resonance frequency
through an external influence or signal. This definition is often
used in the adjacent area of metamaterials [8]. Instead, in
the following a broader term “reconfigurable” is employed
because it means not only tuning of the resonance frequency,
but also implies any kind of dynamic control of characteristics
of the device through electrical, mechanical, optical, chemical,
or other means. This definition is used in the adjacent and
well-established area of reconfigurable antennae [9], which
can simultaneously change the resonance frequency, shape
and linewidth, far-field radiation pattern, impedance, and
polarization. According to this definition, the modulation
[10,11] and variation [12,13] of plasmon resonances that are
especially important in microfluidics-based plasmonic sensing
and fractal plasmonic structures may also be considered as a
type of dynamic reconfiguration.

In this paper, we propose and theoretically analyze a room-
temperature liquid-metal nanodroplet that changes its shape,
and therefore allows reconfiguring the plasmon resonance,

due to capillary oscillations. Capillary oscillations of the
nanodroplet arise because of a competition between inertia
and surface tension [14], and may be driven electrically
or mechanically (see, e.g., [15]). In our study, for sim-
plicity and to highlight important physics, the nanodroplet
oscillates in a vacuum or air. However, the fundamental
physics remains essentially the same in the scenario of
the nanodroplet surrounded by a liquid. As the constituent
material of the nanodroplet we consider a room-temperature
liquid-gallium metal alloy that, in contrast to liquid mercury,
is nontoxic and has a relatively low density [16,17]. We
demonstrate that, similar to solid-gallium nanoparticles of
∼100–300-nm diameter [18,19], liquid-gallium nanodroplets
of comparable size [17] have plasmon resonance frequencies
in the ultraviolet spectral range. We also show that the good
mechanical properties of liquid-gallium alloys, such as a large
and reversibly changeable surface tension and low viscosity
[16,20], enable capillary oscillations with a low damping rate
and oscillation frequency controllable in the MHz-to-GHz
range. By considering the scenario of capillary oscillations
driven electrically or mechanically, we calculate that the
reconfiguration of the plasmon resonance in the 150–300-nm
spectral range is possible with experimentally achievable peak
amplitudes of the applied ac voltage or mechanical pressure.

Thus, liquid-metal nanodroplets may operate as dynami-
cally reconfigurable optical nanoantennae and therefore have
the same wide range of applications in photonic devices
conceivable with nanoantennae [2–5]. We also envision
applications in emergent areas such as sensing of sound
at the nanoscale [21,22], unconventional photonics [23,24],
and detection of mechanical signatures of cells and bacteria
[25]. Finally, although our analysis is mostly focused on
nanodroplets oscillating in a vacuum or air, our findings
are extendable to the case of liquid-metal nanodroplets
operating inin vivo biological environments, thereby opening
new opportunities for biology and medicine [26].

II. CAPILLARY OSCILLATIONS

Applications of microscopic liquid droplets in photonics
were previously discussed in [27–29]. For example, in [29]
a water-droplet microresonator fabricated on the edge of an
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optical fiber was demonstrated. However, a large size and low
optical refractive index (n = 1.33 for water) of liquid droplets
prevent them from applications at the nanoscale. Moreover,
preference has mostly been given to acoustic-like oscillations
(MHz-range frequencies) of microscopic liquid droplets rather
than to capillary ones (kHz range) because of the focus on
applications in high-frequency optomechanics [28].

However, the nanoscale size of liquid-metal droplets in
combination with a high surface tension σ and relatively
low density ρ of liquid-gallium alloys (∼10 and ∼6 times
σ and ρ of water, respectively [16]) allows achieving capillary
oscillations in the GHz-frequency range. Thus, we consider
capillary oscillations of a single, initially spherical liquid-
gallium alloy nanodroplet and analyze the resonance angular
frequency ωl and peak amplitude Al of the capillary oscillation
modes with the mode numbers l.

In the linear approximation, ωl of a nanodroplet oscillating
in a vacuum or air is given by [14]

ω2
l = l(l − 1)(l + 2)σ/(ρR3), (1)

where σ and ρ are the surface tension of the liquid metal
and density, respectively. The modes l = 0 and l = 1 are
zero-frequency modes corresponding to the conservation of
volume and translational invariance, respectively. The lowest
nonzero frequency (fundamental) mode excited in experimen-
tal conditions is l = 2.

The three-dimensional (3D) shapes of the oscillation modes
are given by (see, e.g., [15])

r = R[1 + (Al/R) cos(ωlt)Pl(cos θ )], (2)

where the coordinate origin is at the center of the nanodroplet,
Al/R is the peak amplitude of the lth mode, t is time,
θ = 0, . . . ,2π , and Pl(x) = ∑M

m=0(−1)m (2l−2m)!
2lm!(l−m)!(l−2m)!x

l−2m

where M = l/2 or M = (l − 1)/2 whichever is an integer.
Figure 1 shows representative oscillation mode shapes

through a half-period of oscillation for the modes l = 2, . . . ,7

with the peak oscillation amplitude Al/R = 0.3. Within the
half-period of oscillation the nanodroplet assumes the shapes
at T = 0 and T = 1 corresponding to the largest deviation
from the spherical shape T = 1/2 (here Tl = ωlt , the index
l is omitted for simplicity). For the fundamental l = 2 mode
the shape of the nanodroplet changes from an oblate to prolate
spheroid. For l = 3 it changes from an inverted pyramid to
a pyramid, and so on. For the second half of the period
the nanodroplet retraces the shapes assumed in the first
half.

In general, Eqs. (1) and (2) are valid for linear capillary
oscillations of an inviscid and incompressible liquid droplet
with the infinitesimal amplitudes Al/R → 0 [14]. This linear
theory was developed by Rayleigh and later extended to take
into account viscosity of the droplet and consider the scenario
of a viscous liquid droplet immersed in another viscous liquid
[30,31].

Small amplitude (Al/R ≈ 0.1, . . . ,0.4) oscillations were
analyzed in [32] and a decrease in ωl was predicted for the
modes l = 2, . . . ,4 as ω̃l = ωl[1 − γl(Al/R)2]. The values of
γl can be found in [32].

Large amplitude (Al/R � 0.4) nonlinear oscillations of
inviscid droplets were investigated in [33], and viscosity was
taken into account in [34]. The numerical method proposed
in [34] also works in the case of small amplitude oscillations,
and together with earlier numerical results [35,36], it confirms
the accuracy of the theory from [32].

Using the corrections for the oscillation mode shapes from
[32], we analyze the difference between the predictions of
the linear and nonlinear theories. At the peak oscillation
amplitudes Al/R = 0.4 considered in [32,35,36] for the modes
l = 2, . . . ,4, the variations in the shape of the oscillating
droplet follow the predictions of the linear theory within
∼10% accuracy, with the maximum deviation occurring near
the equator and the poles of the droplet. The most notable
difference is observed when the linear theory predicts the
return of the droplet to a perfectly spherical shape, but the

FIG. 1. Representative oscillation mode shapes of plasmonic liquid-gallium alloy nanodroplets through a half-period of oscillation for the
l = 2, . . . ,7 modes. The peak oscillation amplitude for all modes is Al/R = 0.3 as justified in the main text. Tl = ωlt is given in the units of
π radians (Tl = 1 is a half of period).
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nonlinear theory produces a prolate spheroid shape for the
fundamental mode (l = 2) and multilobed shapes for the
modes l = 3 and l = 4.

Consequently, we expect a <10% difference between the
oscillation mode shapes in Fig. 1 obtained in the linear
approximation and the predictions of the nonlinear theory
and simulations in [32,35,36] because the peak amplitude
Al/R = 0.3 used in our analysis is smaller than that in those
papers.

Rigorous numerical analysis has to be employed instead
of our linear model when quantitative agreement needs to be
achieved. This requires software implementation based on a
complex Galerkin finite-element technique combined with an
implicit predictor-corrector method [34]. However, such soft-
ware is complex to develop, not readily available, and requires
high-performance computational facilities. Therefore, in the
following we take advantage of a simple and intuitive linear
model because in this work we mostly aim to demonstrate
dynamic reconfiguration in the optical domain.

We analyze the shape mode equation [14,15,30] to define
the strength of the oscillation driving force Fl required to
produce the modal shapes in Fig. 1

äl + 2(l − 1)(2l + 1)μ

ρR2
ȧl + l(l − 1)(l + 2)σ

ρR3
al = lFl

ρR
,

(3)

where ωl is given by Eq. (1), μ is the viscosity of the
liquid metal, and al is a function of time t representing
the instantaneous amplitude of the lth oscillation mode. For
periodic Fl , Eq. (3) describes a periodically forced damped
harmonic oscillator, for which the general solution is the sum
of a transient solution and a steady-state response.

We are interested in the amplitude of the steady-state
response because it relates the value of Al/R to the peak am-
plitude of Fl . As the oscillation force we consider mechanical
pressure or applied ac voltage. In the former case, nanodroplets
may be surrounded by a liquid and excited by ultrasound. It
is noteworthy that the general physics of immersed liquid-
metal nanodroplets is essentially no different from that of
nanodroplets oscillating in vacuum or air. The scenario of
the excitation with ultrasound is schematically illustrated in
Fig. 2(a), where an immersible ultrasonic transducer is placed
into a water tank and a cuvette with an aqueous solution of
liquid-metal nanodroplets is placed in the area of the focal spot
of the transducer. The cuvette is made of a material that is trans-
parent for both ultrasound and incident light. (Incident light is
shown schematically; see, e.g., [37] for optical characterization
of liquid-based samples.) Due to a close similarity between
the setup in Fig. 2(a) and experimental equipment employed
in photoacoustics, further technical details may be found in
works on photoacoustic interactions (see, e.g., [38]). Another
scenario of mechanical excitation may be the propulsion of
nanodroplets with a catapult [39]. Although this effect has
so far been demonstrated for macroscopic droplets only, the
behavior of liquid-metal nanodroplets is expected to be similar.
Significantly, experimental snapshots of catapulted droplets in
[39] demonstrate that they oscillate and accept shapes similar
to those in Fig. 1.

FIG. 2. Schematic illustration of experimental setups for the
excitation of capillary oscillation of nanodroplets with (a) ultrasound
and (b) ac voltage.

The excitation scenario of applied ac voltage corresponds to
electrowetting: the electrical control of wettability used to han-
dle liquid droplets [15], including liquid-metal ones [40,41].
A typical electrowetting setup employs a thin insulating layer
(thickness d and radio-frequency range dielectric permittivity
εd) that separates the droplet from the counter electrode. In
general, two electrode arrangements can be employed: (i) a
fine metal probe and (ii) a planar electrode (see, e.g., [40] for
details). In Fig. 2(b), we show a planar configuration because
this appears to be more suitable for a nanoscale system as well
as minimizes parasitic reflections and plasmon losses from the
metal probe.

According to [15], for electrowetting Fl = (2l + 1)
ε0εdV

2
l /(2dR), where ε0 is the vacuum permittivity and Vl

is the peak amplitude of the applied ac voltage for the lth
mode. However, because in our model the nanodroplet is
not attached to a surface, in calculations we use the generic
values d = 100 nm and εd = 6, which may be suitable for
the design of real-life devices. At the resonance, for the peak
amplitude Al/R = 0.3 from the steady-state solution to Eq. (3)
we obtain Fl = 0.3R2bωlρ/l for the mechanical pressure
excitation and Vl =

√
0.6R3bωlρd/[l(2l + 1)ε0εd] for the ac

voltage excitation. Here b = 2(l − 1)(2l + 1)μ/(ρR2).

III. RECONFIGURABLE PLASMON RESONANCES

We use typical liquid-gallium alloy parameters [16,20]:
density ρ = 6360 kg/m3, viscosity μ = 0.0024 Pa s, and
surface tension reversibly changeable from σ = 0.7 N/m
down to 0.07 N/m (approximately σ of water) [20]. The
radius of the spherical (undeformed) nanodroplet R = 100
nm is chosen because this is a typical size of gallium alloy
metal nanodrolets that can be achieved by sonicating the metal
in an aqueous solution [17]. Solid-gallium nanoparticles of
comparable size support plasmon resonances in the ultraviolet
spectral range, in which the dielectric functions of liquid and
solid gallium are nearly identical [19,42].

Figure 3(a) shows the capillary resonant oscillation fre-
quency fl = ωl

2π
as a function of the surface tension σ

for the modes l = 2, . . . ,7. Figure 3(b) shows the voltage
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FIG. 3. (a) Resonance oscillation frequency of the modes l =
2, . . . ,7 as a function of the surface tension σ . (b) Voltage (left y

axis, solid curves) and pressure (right y axis, dashed curves) required
to achieve the peak amplitudes Al/R = 0.3 for the modes l = 2, . . . ,7
as a function of σ . Similar to panel (a), the lowest (highest) curves
correspond to the mode l = 2 (l = 7).

(left y axis, solid curves) and pressure (right y axis, dashed
curves) required to achieve the peak amplitudes Al/R = 0.3
for the modes l = 2, . . . ,7, as a function of σ . We observe
that the lowest possible oscillation frequency is ∼40 MHz for
the mode l = 2, but for the mode l = 7 it can reach 1 GHz. The
applied voltage (pressure) required to achieve Al/R = 0.3 at
these frequencies ranges from ∼10 (∼4 MPa) to ∼55 V (120
MPa), which are achievable in experiment values [15,23].

Figure 4 shows the calculated scattered light intensity spec-
tra of the nanodroplet at T = 0, T = 1, and T = 1/2 (spherical
shape) for the modes l = 2, . . . ,7. Three-dimensional (3D),
static shapes of the nanodroplet from Fig. 1 were used in the
calculations. The the insets in Fig. 4 show the cross-sections
of the 3D shapes at T = 0, T = 1, and T = 1/2 calculated
using Eq. (2).

The scattered light intensity spectra were calculated using
a customised [43] 3D optical total-field scattered-field finite-
difference time-domain (FDTD) method [44] with the spatial
discretization 2 nm. We use the dielectric permittivity function
of liquid gallium [19], which is a good model for gallium-

FIG. 4. Scattered light intensity spectra calculated for the static
three-dimensional (3D) shapes assumed by the nanodroplet at T = 0
(dashed curves), T = 1 (solid curves), and T = 1/2 (dotted curve)
shown in Fig. 1. The insets show the cross-sections of these 3D
shapes. The same curve styles are used in the insets and the main
panels.

based alloys [42]. In calculations, we ignore the presence of a
nanometers-thin native gallium oxide layer formed on top of
the liquid-gallium alloy because this layer is easily removable
[20].

The optical excitation source is a plane wave normally
incident onto the nanodroplet. Light transmitted through the
computational domain with a single nanodroplet is detected
by a probe, and its intensity is normalized to the intensity
of the incident light such that the values >1 indicate a field
enhancement due to the plasmon resonance. The employed
computational scheme simulates an experimentally important
scenario of light scattering measurements from a liquid sample
[37] such as an aqueous solution of liquid-metal nanodroplets
[17]. Very often, in those measurement only light scattered in
the forward direction is detected. We note that the calculated
spectra of the transmitted light may vary when the angle
between the direction of the incident light and the probe is
varied, which is also possible in experiment, and in that case
spectral variations are especially expected when asymmetric
capillary oscillations of the nanodroplet are excited (see
below).

In Fig. 4, we observe changes in the optical spectrum in
the 150–300-nm range due to the shape deformation of the
nanodroplet. In particular, as compared to the spherical shape
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(T = 1/2), the plasmon resonance peaks shift in frequency
and their intensity is changed. Moreover, additional resonance
peaks appear in the spectra for the higher-order oscillation
modes.

For the modes l = 2,4,6 the spectra produced by the modal
shapes at T = 0 and T = 1 are different, but for the modes
l = 3,5,7 they coincide to almost graphical accuracy. Hence,
the incident light senses more variations in the nanodroplet’s
shape tuned on one of its even modes than when an odd mode is
excited. This result is attributed to the symmetry (asymmetry)
of the even (odd) modes with respect to the horizontal axis in
the insets in Fig. 4. Whereas the deformed nanodroplet shapes
for, e.g., the l = 3 mode are the same but rotated by π radians,
for the mode l = 4 they are different. This results in different
optical properties.

IV. CONCLUSION

We propose and theoretically analyze a room-temperature
liquid-metal nanodroplet as a dynamically reconfigurable plas-
monic structure, which may be used as an optical nanoantenna
having applications in nanoscale optical filters, sensors, opto-
mechanic systems, and transducers of electrical and mechan-
ical forces into optical signals (e.g., nanoscale microphones).
The ability to manipulate the plasmon resonances originates
from capillary oscillations of the nanodroplets, which may
have the peak amplitudes of ∼30% of the undeformed radius at
attainable in experiments levels of the oscillation driving force
such as applied ac voltage of ∼10–50 V or pressure of ∼5–100
MPa. It is noteworthy that the predicted large changes in the
shape of the liquid-metal nanodroplets cannot be achieved in
solid-metal nanoparticles [45] due to mechanical hardness of
the latter. Although oscillations with comparable amplitudes
are possible with gas nanobubbles in liquids [24], nanobubbles
have a low refractive index contrast with the host liquid
(	n ≈ 0.33 in water) and thus require auxiliary plasmonic
nanostructures to enable their interaction with the incident
light [24]. In contrast, liquid-metal nanodroplets combine both
acoustic and optical properties.

Furthermore, the ability to manipulate the surface tension of
liquid-gallium metal alloys [20] opens up opportunities to tune
the oscillation frequency from several MHz to several GHz.
This is difficult to achieve in solid-metal nanoparticles that
vibrate mostly at frequencies >1 GHz and these frequencies

cannot be tuned. Finally, liquid-gallium alloy nanodroplets
may be frozen at temperatures <10−15oC or so [16], which
converts them into solid-state nanoparticles with virtually the
same plasmonic properties [19] but having one of the complex
3D shapes shown in Fig. 1. Thus, variations of the temperature
around the freezing point of the liquid-gallium alloy may be
used to switch the nanodroplet from the liquid to solid phase
and vice versa. However, because liquid-gallium alloys tend
to supercool below the freezing point, the liquid nanodroplet
has to be perturbed to create crystal nucleation sites required
to initiate freezing.

Finally, we note that liquid-metal nanodroplets may be
employed inside dual-purpose liquid-core optical fibers [23].
Such optical fibres are designed such that they may guide
light inside their water-filled cores (refractive index n = 1.33)
formed inside Teflon tubings with n = 1.29. Significantly,
Teflon tubings also enable acoustic impedance matching
between water and an optical fiber. The possibility to achieve
impedance matching was also demonstrated in [38]. However,
tubings with n > 1.33 were employed in [38], making them
not appropriate for waveguiding of light. In our case because
of the acoustic impedance matching, when a section of the
fiber is immersed into the water tank in Fig. 2(a) instead of
the cuvette, ultrasound emitted by the transducer propagates
through the fiber without scattering [23], thereby exciting
capillary oscillations of nanodroplets more efficiently than
when a cuvette is employed. The ends of the water-core fiber
are not immersed in water. One end is used to couple light
to the fiber core and the other end is used to collect the
output light. This simplifies the excitation of plasmon modes of
nanodroplets located inside the water-filled fiber core because
light is localized mostly in those regions where nanodroplets
are located. Consequently, many technical challenges due to
the need to focus light on nanodroplets located inside the water
tank [38] no longer apply.
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