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Energetics of the quantum graphity universe

Samuel A. Wilkinson and Andrew D. Greentree
Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne 3001, Australia

(Received 9 September 2014; published 1 December 2014)

Quantum graphity is a background independent model for emergent geometry, in which space is
represented as a dynamical graph. The high-energy pregeometric starting point of the model is usually
considered to be the complete graph; however, we also consider the empty graph as a candidate
pregeometric state. The energetics as the graph evolves from either of these high-energy states to a low-
energy geometric state is investigated as a function of the number of edges in the graph. Analytic results for
the slope of this energy curve in the high-energy domain are derived, and the energy curve is determined
exactly for small number of vertices N. To study the whole energy curve for larger (but still finite) N, an
epitaxial approximation is introduced. This work may open the way to compare predictions from quantum
graphity with observations of the early Universe, making the model falsifiable.
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I. INTRODUCTION

Quantum graphity (QG) is an intriguing and speculative
idea to explain how our familiar concepts of space-time
might arise from somemore fundamental considerations [1].
In particular,QGmodels consider theUniverse to be initially
in some high-energy state with no notion of geometry.
This state is allowed to relax under some Hamiltonian to a
low-energy state in which geometry is emergent. The onset
of familiar geometric space, geometrogenesis, is a central
point of focus of quantum graphity.
Traditionally, the pregeometric starting point of the

model has been taken to be the complete graph on N
vertices, KN , in which every vertex is connected to every
other. When space is represented by a complete graph,
concepts of locality, distance, and direction are at best
poorly defined, and certainly cannot explain the Universe
as it is observed today. It is therefore necessary to posit
mechanisms by which the graph can relax to some global
minimum, which is presumed to have the properties of
geometry that we experience. Mechanisms to allow such
relaxation include the formation of matter on the graph [2]
and equilibration with some external heat bath [3].
The use of graphs to represent space-time is common

in background independent models, such as loop quantum
gravity [4], spin foam models [5], and quantum causal
histories [6], due to the fact that graphs are purely
combinatorial objects and therefore make no reference to
an inherent background geometry. Of particular relevance
to QG is causal dynamical triangulations [7]. These two
models share many features, in particular the notion of
geometry arising as an emergent feature of a model that
does not assume it, simulatability [8] and the existence
of a geometrogenic phase transition [9]. QG also has many
similarities with a recently emerging class of condensed
matter analog models for space-time [10], which include
models in which a quantum theory of gravity emerges as an

effective field theory of some more fundamental structure
[11], such as the approach of Wen and collaborators in
which treating the vacuum as a bosonic spin system leads
to the existence of photons, electrons, and gravitons as
low-lying excitations [12], and the concept that space-time
itself may be a Bose–Einstein condensate [13]. QG fits
this category, as it takes seriously and literally the notion
that space-time may be a sort of condensed matter system
and can be treated using the concepts and techniques of
statistical physics and many-body theory. The key differ-
ence between QG and other theories of emergent space-
time from a discretized model is that in QG the lattice itself
is dynamical rather than fixed.
QG has been shown to give rise to primitive gravitational

behavior, as seen in a toy model of a black hole [14]. When
the model includes additional degrees of freedom on the
edges, theground state of themodel is a string-net condensate
[1,15], from which photons and electrons may emerge as
low-lying excitations [16]. Lieb–Robinson bounds for such
a system have been derived, leading to an emergent speed
of light in this model [17]. See Ref. [18] for a review.
Here we seek to understand some of the properties of

how the Universe might evolve under conditions of QG.
In particular, we calculate the energy of states at or close
to the QG ground state by explicitly calculating the energy
of the QG graph as a function the number of edges for
certain finite cases, and in the infinite limit. In addition to
the complete graph as being a candidate initial state for the
Universe, our results highlight the fact that the empty
graph, i.e. the graph with N vertices and no edges, is a
candidate pregeometric graph. Because the rate of change
of the Hamiltonian with respect to total edge number is
different in the limits that the number of edges tends to
infinity, or tends to zero, future work may identify
observational means to distinguish these two possibilities.
Figure 1 shows a schematic of the three main regions of
interest: the two possible starting points (the complete
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graph and the empty graph) and the low-energy geometric
state (here assumed to be a honeycomb lattice), with a
rough sketch of the energy curve connecting these three
regions.
It is important to stress that determining the global

ground state of the QG model, and indeed determining
any local ground state as a function of the number of edges,
is equivalent to graph isomorphism: a problem for which
there exists no known P algorithm [19]. Hence, it is
necessary to make certain assumptions about the likely
evolution of states, and practical considerations such as
metastability and frustration are likely to play a significant
role in the “true” evolution of the Universe, which is likely
to lead to defects in the emergent graph [20]. To calculate
the energetics of the graph, we consider variations acces-
sible by the addition or deletion of a single edge. We term
this constraint the epitaxial approximation.
This paper is organized as follows. We first introduce the

QG Hamiltonian and the particular parameter set that we
are using to analyze it. We then discuss the total energetics
of the QG Hamiltonian as a function of the number of
edges, under the epitaxial approximation. Finally we offer
speculation for possible observational consequences of
these results so as to suggest tests to falsify the QG model.

II. MODEL

To construct a QG model in which geometry is an
emergent coarse-grained property of space, we represent
space by an abstract graph G with no a priori notion of
geometry. A graph consists of a set of vertices, V ¼ fνig,
and set of edges, E ¼ fðνi; νjÞg, where the νi correspond to

points in space and the edges correspond to adjacencies
between these points [i.e. two vertices νi and νj can be
considered adjacent if the edge ðνi; νjÞ ∈ E]. The graphs
considered in quantum graphity are specifically undirected,
unlabeled simple graphs. The underlying structure of the
model is outlined in more detail in Ref. [1].
Following Konopka et al., we apply the canonical QG

Hamiltonian to the graph G

H ¼ HV þHL þHhop; ð1Þ

where HV is the valence term, describing the number of
edges per vertex; HL the loop term, counting the size of
plaquettes; and Hhop the hopping term, which describes the
motion of edges on the graph. Explicitly, the valence term is

HV ¼ gV
X

i

epðvi−v0Þ2 ; ð2Þ

where vi is the valence, or degree of vertex νi, v0 is the
ideal valence of the graph, p is a dimensionless real
number, and gV is a positive coupling constant. This term
favors regular graphs where every vertex has degree v0.
The loop term HL is

HL ¼ −gL
XLmax

L¼3

rL

L!

X

a

Pða; LÞ; ð3Þ

where Pða; LÞ is a function that counts the number of loops
of length L that pass through vertex a, r is a dimensionless
real number, and gL is a positive coupling constant. For our
purposes, a loop is a sequence of vertices ν1; ν2;…νL; ν1
such that the edges ðν1; ν2Þ; ðν2; ν3Þ…ðνL; ν1Þ exist in the
graph G and all vertices are distinct, where L is the length
of the loop. The initial and final vertices are identified;
however, any vertex in the loop can equally be considered
the final/initial vertex.
The sum over loop lengths L begins at 3, because that

is the length of the shortest possible nonretracting loop.
Ideally, the sum would extend upward to include loops of
infinite length, but to the make the model computationally
tractable, loop counting is truncated at some maximum
length Lmax. The weighting factor rL=L! is small both when
L is small and when L is large. Between these points it
reaches a peak at some value L0, which is determined by r.
Thus, arbitrarily long loops contribute a negligible amount
of energy, justifying the use of a truncation length Lmax, and
by varying r we can tune the Hamiltonian so that loops of
some desired length L� contribute most. The negative sign
in front means that this term lowers the energy of the graph,
so that it favors graphs with predominantly loops of length
L�. The loop counting function Pða; LÞ is determined so
that each unique loop is counted only once. If such a
procedure were not used, then a symmetry factor of 1=2L
would be required to account for nonunique loops.

FIG. 1 (color online). Schematic of the three regions of interest
of the graph and the energy curve connecting them. This includes
two possible high-energy pregeometric graphs: the empty graph
that consists of disconnected vertices with no edges and the
complete graph where every vertex is connected to every other.
Each of these high-energy graphs can lower its energy by
creating/deleting edges and thus tend toward the low-energy
geometric graph, here represented as a honeycomb lattice.
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The last term, Hhop, is a kinetic term that allows edges to
hop about the graph, changing the overall configuration.
The exact form of this term is not relevant for our purposes,
although the presence of such a term is necessary so that
the graph may dynamically evolve without changing the
number of edges.
In the Hamiltonian of Eq. (1), the total number of edges

is a constant of the motion. Edge creation or deletion is
therefore a nonenergy conserving process. As mentioned
above, this implies some form for thermal reservoir is
necessary to force evolution to the ground state [3], which
may be problematic as the graph represents the entire
Universe. This problem is addressed by associating the loss
of energy of the graph with the creation of matter (and
vice versa, the annihilation of matter can raise the energy
of the graph) [2]. Nevertheless, we do not address such
questions here, instead concentrating on the energetics of
the approach of the Universe to the ground state as a
function of the number of edges.
The loops term in the Hamiltonian presents significant

computational difficulty. For graphs on small N, a back-
tracking algorithm based on the method of Franzblau [21]
is employed. This is a “brute force” approach which labels
all vertices on the graph and explores all possible paths,
counting those which qualify as minimal loops. For large N
this method becomes computationally prohibitive, so
instead a method using explicit formulas for the number
of loops of a given length is used (discussed below). This
more direct approach is an approximation, due to the fact
that explicit formulas for loops of L > 7 are not known
[22]. The fact that longer loops do not contribute in this
method means that in general extended lattices are not
favorable (with no contribution due to loops of length > 7
there is no energetic benefit to the formation of connected
structures on more than seven vertices).
Following Konopka et al., the values of the Hamiltonian

parameters chosen are p ¼ 1.2, r ¼ 6.5, gV=gL ¼ 500, and
v0 ¼ 3. The choice of parameters must, within some limits,
determine the resultant ground state of the QG Universe,
the rate of approach of some initial state to the ground state,
and the rate at which matter is created on the graph. Hence,
it is important to understand what observational conse-
quences there are to these choices, and whether it is
possible to constrain these parameters based on observa-
tions of the Universe and the big bang. These parameters
are chosen to impose a regular 2D honeycomb graph as the
ground state, although it is not known if these parameters
favor a honeycomb graph as the true ground state of the
system or if the honeycomb graph is a local minimum.
For computation tractability, loop counting is truncated at
Lmax ¼ 14 in the algorithmic approach and Lmax ¼ 7 in
the explicit approach. At present, these parameters can only
be used to generate insight into the properties of QG, and
should not be considered as explicitly describing the
Universe in which we live.

III. ENERGETICS OF GEOMETROGENESIS

A. Analytic results

The evolution of the QG universe is postulated to begin
in a high-energy pregeometric state. This pregeometric
state is typically considered as the complete graph, but
here we also discuss the empty graph. The Universe then
proceeds toward some lower-energy state. Because the
number of edges of the ground state is different from either
of the two likely starting states, this evolution must perforce
include either or both edge creation and deletion, as well
as reorganization of the graph to the local minimum with
a given ratio of the number of edges to the number of
vertices. Considering both creation and deletion of edges
naturally suggests the concept of holes in the QG model,
and we use the concept of holes here to refer to the absence
of an edge. We will show that the QG Hamiltonian
described above shows marked particle-hole asymmetry.
The rate of edge creation and deletion compared with the

rate of edge hopping is not known, so we shall consider this
as a two-step process. First, we will assume that a single
edge is created/deleted; then we allow the graph sufficient
time for every edge to hop until the graph energy reaches
the minimum energy for this number of edges before
another edge is created/deleted. Therefore, each step along
the path from the empty or complete graph to a low-energy
ground-state graph corresponds to a ground-state graph for
a fixed number of edges, M, where the number of holes is
equivalently M� ¼ ½NðN − 1Þ=2� −M.
Consider first the empty graph on N vertices. Since there

are no edges, there can be no loops, and the graph energy is

E
0
¼ Nepv

2
0 ; ð4Þ

where we have used gV ¼ 1. We now examine the addition
of a single edge. There is no preferred location for this
edge, as every graph of one edge on N vertices is
isomorphic. The energy of all such graphs is

EM¼1 ¼ ðN − 2Þepv20 þ 2epð1−v0Þ2 : ð5Þ

As one more edge is created, there are two possible graph
configurations: one in which the two edges are connected
(E∠) and one in which they are separate (E‖):

E∠ ¼ ðN − 3Þepv20 þ 2epð1−v0Þ2 þ epð2−v0Þ2 ; ð6Þ

E‖ ¼ ðN − 4Þepv20 þ 4epð1−v0Þ2 : ð7Þ

Of these two configurations, separate edges are always
favored for any real v0, and this condition is independent of
both N and p.
Repeating this process reveals that at each step the

lowest-energy graph with M edges is one in which these
edges are completely separate, so long as such separation is
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possible. Until loop formation becomes required, the lowest
energy at each step is

E ¼ ðN − 2MÞepv20 þ 2Mepð1−v0Þ2 ; ð8Þ

so that the rate of change of energy as edges are formed is

δEjM<N=2 ¼ 2½epð1−v0Þ2 − epv
2
0 �: ð9Þ

The maximum number of edges that can form before there
are no longer any vertices of degree 0 is M ¼ N=2. At this
value of M, the graph is completely populated by disjoint
edges and is 1-regular (every vertex has degree 1), with
energy

E ¼ Nepð1−v0Þ2 : ð10Þ
Further edge formation will not be able to continue the
trend of disjoint edges forming. This will lead to a sudden
change in the slope of the plot of energy against the number
of edges. This discontinuity is general and is seen whenever
the maximum degree of the graph changes. Adding an edge
that turns two vertices of degree 0 into vertices of degree 1
gives a change in energy given by Eq. (9). However, once
there are no vertices of degree 0 left, adding an edge that
turns two vertices of degree 1 into vertices of degree 2
causes a change in energy,

δEjN=2<M<N ¼ 2ðepð2−v0Þ2 − epð1−v0Þ2Þ; ð11Þ

with some corrections due to HL once more of these edges
have formed.
After M ¼ N=2 it becomes very difficult to proceed by

insisting that the graph finds the lowest-energy state before
more edges form, as the number of possible graphs withM
edges becomes large and the formation of loops becomes
possible.
We now turn to the case where we start from the

complete graph. The complete graph with N vertices has
energy

EK ¼ NepðN−1−v0Þ2 : ð12Þ

As with the empty case, all single edge deletions are
equivalent, and this process may equivalently be considered
as the formation of an edge hole. There are two distinct
cases for the two-hole problem: where the two holes are
connected (E∠�) and where they are separate (E‖�):

E∠� ¼ ðN − 3ÞepðN−1−v0Þ2 þ 2epðN−2−v0Þ2

þ epðN−3−v0Þ2 ;

E‖� ¼ ðN − 4ÞepðN−1−v0Þ2 þ 4epðN−2−v0Þ2 : ð13Þ

We have neglected loops here for two reasons. First, in
most of the calculations of loops in quantum graphity

presented here, the loops considered are shortest-path
loops, also termed minimal loops. As minimal loops best
characterize a lattice structure, they are therefore important
for yielding a crystalline ground-state graph. In the com-
plete graph, shortest-path loops cannot form as there are no
shortest paths of lengths greater than 1 (the distance
between any two vertices is 1). The second reason loops
can be neglected here, which is independent of the loop-
counting methods and definitions employed, is that the
valence energy in the vicinity of the complete graph is
expected to be many orders of magnitude greater than the
loop energy. The number of loops of length L that pass
through single vertex a is bounded from above by

Pða; LÞ < cvL−1; ð14Þ

where v is the degree of vertex a and c is some constant, the
exact value of which is not important for this discussion.
We see that the maximum possible contribution from the
loops term is linear in the degree of each vertex, v, whereas
the valence energy scales as ev

2

. Near the complete graph v
will be large, and loops will therefore contribute negligibly
to the energy.
As with the empty case, disjoint holes in the complete

graph are most favorable. After M� < N=2 disjoint holes
have formed, the energy is

E ¼ ðN − 2M�ÞepðN−1−v0Þ2 þ 2M�epðN−2−v0Þ2 : ð15Þ

When M� ¼ N=2, the graph is (N=2) regular and experi-
ences a sudden drop in energy, analogous to the empty case.
Therefore, every edge deletion near the complete graph
changes the graph energy by

δEjM�<N=2 ¼ 2½epðN−2−v0Þ2 − epðN−1−v0Þ2 �: ð16Þ

Note that the energies associated with creation of edges
from the empty graph, and the creation of holes in the
complete graph are different, implying edge-hole asym-
metry. For large N, energies and rates of change of energy
are much greater near the complete graph than near empty,
due to the appearance of N in the exponent in Eq. (16). We
discuss other manifestations of edge-hole asymmetry in this
model, below.
To explore the energetics of the QG Hamiltonian, we

also performed numerical simulations of the energy of
finite models with up to six vertices, as a function of the
number of edges (Fig. 2). Algorithmic loop counting was
employed to give a more accurate calculation of the
absolute ground state. Energy was plotted as a function
of m ¼ M=N. There are apparent steps in the energy plot,
but these are just artifacts of the logarithmic scaling and the
limited number of points plotted. A closer look given in the
inset of Fig. 2 reveals that the energy plot consists of several
linear segments of different gradients.
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As expected, there is a discontinuity in energy each time
the maximum valence of the graph drops, and the global
minimum occurs when m ¼ 3=2, which is the requirement
for a 3-regular graph. This particular behavior is a reflection
of our choice of parameters, and a different choice for the
particular values of these parameters will change the
location of the global minimum. In general, any model
in which gV > gl is expected to be v0 regular, with a global
minimum at m ¼ v0=2. For a finite graph, v0 regularity is
not always possible, as M ¼ v0=2N may not be an integer,
but this is not a problem for the N → ∞ limit of the model,
as a k-regular graph on infinite vertices is always possible.
In the N → ∞ limit and when m is far from v0=2 so that

the valence term dominates, the steps as the maximum
valence of the ground state decreases will be seen at
m ¼ n=2 for any integer n. Closer to m ¼ v0=2 the loops
term will become more important, and it is not clear exactly
what effect this will have on the step structure. To study this
behavior numerically at larger N we apply the epitaxial
approximation discussed below.

B. Epitaxial approximation

The number of possible graphs onN vertices is 2NðN−1Þ=2.
This number becomes large very quickly, so to find the
lowest-energy graph on N vertices when N ≳ 7 we have
imposed certain restrictions. One such restriction comes
from assuming that geometric space in quantum graphity
forms in a manner analogous to the epitaxial growth of
crystals, rather than considering unconstrained optimization
of the graph at each step.

To explore the epitaxial growth of spatial “grains,” we
start with a fixed, frozen configuration, to which we add or
delete one edge. Treating this new edge or hole as a particle,
we allow the edge to explore the graph until it finds a
(possibly degenerate) local minimum energy configuration.
We then repeat for the next edge or hole. In this way, rather
than calculating the energy of every possible graph on N
vertices with M edges, we only consider those graphs
attainable by adding or deleting a single edge to some
fixed initial graph. This approximation, although physically
motivated, is not guaranteed to find the true minimum
configuration for a fixed number of edges, but it does
provide insight into how it is likely that spatial domains
could develop under the assumptions of QG.
Another approximation required to perform calculations

for large N is to truncate loop counting at loops of length 7.
This approximation allows the use of explicit formulas for
calculating the number of loops in a graph from the trace of
the adjacency matrix, and such formulas are not known for
loops of length > 7. The lack of contribution from longer
loops means that the graph does not benefit energetically by
forming an extended lattice. Rather, there is a preference for
the formation of small disjoint subgraphs.
The energetics of epitaxial growth of the quantum

graphity model were calculated for all cases up to N¼ 24
starting from both the empty (edge addition) and the
complete graphs (hole addition) (see Fig. 3). One of the
most immediately striking effects visible is the asymmetry
of the energy from each starting point. The steps associated
with a drop in maximum valence that were predicted in the
case where the graph reaches a ground state for each fixed
value ofM are seen here, although we can see that the exact
location of these steps differs between the complete and
empty initial state approaches. This leads to an apparent
hysteresis.
Looking more closely at the region where the absolute

ground state of the system is expected to lie, the asymmetry
of the edge- and hole-addition approaches is even more
clear. Most importantly, the lowest-energy state found in
this approach is not a 3-regular graph but rather a 4-regular
graph. To examine why this may be the case, the particular
configurations of the graph are drawn at both the point
where we except the ground state to occur [m ¼ 3=2,
Fig. 3(e)] and the point at which we actually see the lowest
energy [m ¼ 2, Fig. 3(f)].
In both cases, the graph is composed of several smaller

disjoint subgraphs. It is unclear if this is an artifact of the
epitaxial approximation or a more general feature of the QG
Hamiltonian. The requirement of truncation of the sum over
all loop lengths in HL may mean that the Hamiltonian is
minimized when the graph consists of disjoint subgraphs of
length Lmax, as there will be no energetic benefit of forming
domains larger than this and the graph grains additional
loops which wrap around the entire grain. This may
indicate that an additional constraint is required in the

FIG. 2 (color online). Log to base e of the ground-state energy
of a graph on N vertices normalized to the log of the empty graph
energy, as a function of the number of edges M, calculated
explicitly for up to N ¼ 6. When N is large enough
ðN − 1Þ=2 > v0=2, the ground state is a 3-regular graph occur-
ring at M=N ¼ v0=2 ¼ 3=2. The plot consists of linear segments
of different gradients. The apparent steep steps in the plot are due
to the logarithmic energy scale, as shown in the inset. The inset
shows a closeup of the energy divided by gV for N ¼ 3; 4; 5, and
6 vertices on a linear scale in the vicinity of M=N ¼ 1. In both
figures N ¼ 3 is blue, N ¼ 4 is red, N ¼ 5 is green, and N ¼ 6 is
magenta.
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QG Hamiltonian to ensure that the absolute ground state
of the system is connected, as a graph consisting of small
disjoint subgraphs cannot represent space as we experi-
ence it.
The fact that the lowest-energy state is not 3-regular is

not expected to be general and may be a result of either
the epitaxial approximation or the small size of the graph.
The 3-regular graph in Fig. 3(e) consists of four disjoint
subgraphs, whereas the 4-regular graph in Fig. 3(f) is
composed of only three disjoint subgraphs. The 3-regular
graph contains two subgraphs of only four vertices, making

the formation of 6-loops impossible (recall that these are
the loops we have chosen to contribute most significantly
to the loop energy). This is likely to be the main reason why
the 4-regular graph is a lower energy than the 3-regular
graph. In the early stages of epitaxial growth, the graph was
primarily concerned with minimizing the number of ver-
tices that vary from ideal valence by a significant amount
(here a jvi − v0j of 2 or 3 may be considered significant).
In doing so, the graph became stuck in a configuration that
cannot form the 6-loops or latticelike structure that would
minimize the energy.

FIG. 3 (color online). Full energetics of the graph on 6 (a), 10 (b), 16 (c) and 24 (d) vertices in the epitaxial approximation. Both
complete (red) and empty (blue) starting conditions were used, and give quite different results. This indicates a hysteretic effect may be
present and explicitly shows the particle-hole asymmetry of the model. Two degree-regular graphs are reached under the epitaxial
approximation starting from an empty graph on 24 vertices. (e) Shows the 3-regular graph at M=N ¼ 3=2, and (f) shows the 4-regular
graph atM=N ¼ 2. Both graphs consist of several disjoint subgraphs. The fact that the 3-regular graph contains more disjoint subgraphs
may account for its higher energy, despite the fact that a 3-regular graph minimizes HV .
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IV. CONCLUSION

Quantum graphity is a background independent model
in which space is represented by a dynamical graph and
properties such as geometry and locality are emergent at
low energies. We explored the way this model proceeds
from a high-energy pregeometric starting point toward a
low-energy geometric state as edges of the graph were
added or deleted. Calculations were performed for only one
set of parameters (based on those used by Konopka et al. in
Ref. [1]), and specific details of the results are expected to
change when different values are used. In particular, the
location of the minima of the energy curves will be different
for different choices of parameters. To simulate larger
graphs, we made use of an epitaxial approximation as well
as an explicit method for counting short loops. Values for
the rate of change of the energy of the graph as edges were
added or deleted close to the high-energy end points were
obtained analytically, and the full energy curve as a
function of number of edges was plotted numerically up
to N ¼ 24. Future work may be able to compare these
features of the model with observations of the early
Universe in order to fix values for the parameters of the
model, making it potentially falsifiable. For example, a
Fermi’s golden rule argument may make it possible to
determine the rate of formation of spatial domains, given
the differences in energy between two graphs.
Evolution toward the ground state is qualitatively differ-

ent between the two possible starting points: the complete
graph and the empty graph. The complete graph on N
vertices has a metric dimension of N − 1, so a quantum
graphity universe starting from the complete graphs begins
with an effectively infinite-dimensional space that unfolds
into the three-dimensional space we see today. In this
approach the early Universe is highly connected, offering a
possible solution to the horizon problem of cosmology, and
under the epitaxial approximation space remains discon-
nected until it reaches an energetic minimum, which is in
agreement with our current understanding of our Universe.
This may indicate the need to introduce additional con-
straints to the model in order to impose connectivity of
the system (see Ref. [23], for an example of a graph model
that imposes such a constraint).
On the other hand, starting from the empty graph we

initially have no edges at all, which is a stronger notion of
spacelessness and corresponds more closely to the notion
of a universe evolving from “nothing.” Rather than an
unfolding of space as we see with the complete graph
starting point, starting from the empty graphs leads to the
formation of disconnected spatial graphs which later stitch
together. Whether the resulting ground state of the model is
connected or not likely depends strongly on assumptions
of how the graph evolves, and under the epitaxial

approximation for N ¼ 24 we have seen that the lowest-
energy state is indeed one consisting of several disjoint
subgraphs. A disconnected final state would be a poor
representation of our Universe, unless each individual grain
is large enough to represent a universe in itself. In this case
we have a multiverse-type picture emerge, in which there is
no adjacency between the distinct universes. However,
if edges of the graph are relatively free even in the low-
energy state, connections between previously disconnected
universes may form spontaneously.
Many discussions of quantum graphity, including this

one, have assumed a latticelike ground state to be the ideal
low-energy geometric state. It is not quite clear if this
assumption is justified, as the honeycomb lattice has only
been shown to be metastable, and finding the absolute
ground state explicitly and exactly may not be possible. By
analogy with the lattice structures of crystals, a latticelike
ground state may lead to an inherent anisotropy, similar
to the birefringence exhibited by regular crystal lattices.
Furthermore, the assumption of a regular lattice for the
ground state forces the Hamiltonian parameter v0 to be an
integer, where there is no other justification for this. Hence,
crystalline order is not the only possibility. Noninteger
values of v0 would lead to glassy structures forming the
ground-state graphs of the model, where in the N → ∞
limit the mean valence of all of the vertices will be v0. Such
a graph may be more isotropic than a regular lattice graph,
which is a desirable feature for a model of emergent
geometry as it reflects what is observed in the current
Universe.
In this work we have been concerned with finding

lowest-energy states of the model, as this informs both
the morphology of spatial domains and the rate of geo-
metrogenesis. However, at a small but finite temperature,
the end point of the evolution of this model may not be the
ground state, but rather some high-lying state or super-
position of states that exist in equilibrium with some heat
bath. It is not at all obvious that the higher-lying states of
the quantum graphity Hamiltonian exhibit well-defined
emergent geometry, and hence understanding the role of
nonzero temperature in the evolution of quantum graphity
is an important future topic for research.
Future work would consider the explicit time sequence

of how geometrogenesis can occur and especially the
epitaxial growth of geometric space.

ACKNOWLEDGMENTS

A. D. G. acknowledges the Australian Research Council
for financial support (Contract No. DP130104381). We
would like to thank Jared H. Cole for helpful comments and
conversations.

ENERGETICS OF THE QUANTUM GRAPHITY UNIVERSE PHYSICAL REVIEW D 90, 124003 (2014)

124003-7



[1] T. Konopka, F. Markopoulou, and S. Severini, Phys. Rev. D
77, 104029 (2008).

[2] A. Hamma, F. Markopoulou, S. Lloyd, F. Caravelli,
S. Severini, and K. Markström, Phys. Rev. D 81, 104032
(2010).

[3] F. Caravelli and F. Markopoulou, Phys. Rev. D 84, 024002
(2011).

[4] C. Rovelli, Quantum Gravity (Cambridge University Press,
New York, 2004).

[5] A. Perez, Living Rev. Relativity 16, 3 (2013).
[6] F.Markopoulou, ClassicalQuantumGravity 17, 2059 (2000).
[7] J. Ambjorn, J. Jurkiewicz, and R. Loll, arXiv:hep-th/

0604212v1.
[8] R. Loll, Classical Quantum Gravity 25, 114006 (2008).
[9] J. Mielczarek, arXiv:1404.0228.

[10] L. Sindoni, Symmetry Integrability Geom. Methods Appl.
8, 027 (2012).

[11] J. Bain, Stud. Hist. Phil. Mod. Phys. 44, 338 (2013).
[12] Z.-C. Gu and X.-G. Wen, Nucl. Phys. B863, 90 (2012).
[13] B. L. Hu, Int. J. Theor. Phys., 44, 1785 (2005).

[14] F. Caravelli, A. Hamma, F. Markopoulou, and A. Riera,
Phys. Rev. D 85, 044046 (2012).

[15] M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110
(2005).

[16] M. A. Levin and X.-G. Wen, Rev. Mod. Phys. 77, 871
(2005).

[17] A. Hamma, F. Markopoulou, I. Premont-Schwarz, and
S. Severini, Phys. Rev. Lett. 102, 017204 (2009).

[18] A. Hamma and F. Markopoulou, New J. Phys. 13, 095006
(2011).

[19] M. R. Garey and D. S. Johnson, Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness
(Freeman, New York, 1979), p. 155.

[20] J. Q. Quach, C.-H. Su, A. M. Martin, and A. D. Greentree,
Phys. Rev. D 86, 044001 (2012).

[21] D. S. Franzblau, Phys. Rev. B 44, 4925 (1991).
[22] S. N. Perepechko and A. N. Voropaev, Bulletin of PFUR.

Series Mathematics. Information Sciences. Physics 2012,
Chap. 2, p. 6.

[23] S. Chen and S. S. Plotkin, Phys. Rev. D 87, 084011 (2013).

SAMUEL A. WILKINSON AND ANDREW D. GREENTREE PHYSICAL REVIEW D 90, 124003 (2014)

124003-8

http://dx.doi.org/10.1103/PhysRevD.77.104029
http://dx.doi.org/10.1103/PhysRevD.77.104029
http://dx.doi.org/10.1103/PhysRevD.81.104032
http://dx.doi.org/10.1103/PhysRevD.81.104032
http://dx.doi.org/10.1103/PhysRevD.84.024002
http://dx.doi.org/10.1103/PhysRevD.84.024002
http://dx.doi.org/10.12942/lrr-2013-3
http://dx.doi.org/10.1088/0264-9381/17/10/302
http://arXiv.org/abs/hep-th/0604212v1
http://arXiv.org/abs/hep-th/0604212v1
http://dx.doi.org/10.1088/0264-9381/25/11/114006
http://arXiv.org/abs/1404.0228
http://dx.doi.org/10.3842/SIGMA.2012.027
http://dx.doi.org/10.3842/SIGMA.2012.027
http://dx.doi.org/10.1016/j.shpsb.2012.05.001
http://dx.doi.org/10.1016/j.nuclphysb.2012.05.010
http://dx.doi.org/10.1007/s10773-005-8895-0
http://dx.doi.org/10.1103/PhysRevD.85.044046
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/RevModPhys.77.871
http://dx.doi.org/10.1103/RevModPhys.77.871
http://dx.doi.org/10.1103/PhysRevLett.102.017204
http://dx.doi.org/10.1088/1367-2630/13/9/095006
http://dx.doi.org/10.1088/1367-2630/13/9/095006
http://dx.doi.org/10.1103/PhysRevD.86.044001
http://dx.doi.org/10.1103/PhysRevB.44.4925
http://dx.doi.org/10.1103/PhysRevD.87.084011

