1,009 research outputs found

    Fast integral equation methods for the modified Helmholtz equation

    Get PDF
    We present a collection of integral equation methods for the solution to the two-dimensional, modified Helmholtz equation, u(\x) - \alpha^2 \Delta u(\x) = 0, in bounded or unbounded multiply-connected domains. We consider both Dirichlet and Neumann problems. We derive well-conditioned Fredholm integral equations of the second kind, which are discretized using high-order, hybrid Gauss-trapezoid rules. Our fast multipole-based iterative solution procedure requires only O(N) or O(NlogN)O(N\log N) operations, where N is the number of nodes in the discretization of the boundary. We demonstrate the performance of the methods on several numerical examples.Comment: Published in Computers & Mathematics with Application

    Reformulation of the Stochastic Potential Switching Algorithm and a Generalized Fourtuin-Kasteleyn Representation

    Full text link
    A new formulation of the stochastic potential switching algorithm is presented. This reformulation naturally leads us to a generalized Fourtuin-Kasteleyn representation of the partition function Z. A formula for internal energy E and that of heat capacity C are derived from derivatives of the partition function. We also derive a formula for the exchange probability in the replica exchange Monte Carlo method. By combining the formulae with the Stochastic Cutoff method, we can greatly reduce the computational time to perform internal energy and heat capacity measurements and the replica exchange Monte Carlo method in long-range interacting systems. Numerical simulations in three dimensional magnetic dipolar systems show the validity and efficiency of the method.Comment: 11 pages, 6 figures, to appear in PR

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure

    How can a 22-pole ion trap exhibit 10 local minima in the effective potential?

    Full text link
    The column density distribution of trapped OH^- ions in a 22-pole ion trap is measured for different trap parameters. The density is obtained from position-dependent photodetachment rate measurements. Overall, agreement is found with the effective potential of an ideal 22-pole. However, in addition we observe 10 distinct minima in the trapping potential, which indicate a breaking of the 22-fold symmetry. Numerical simulations show that a displacement of a subset of the radiofrequency electrodes can serve as an explanation for this symmetry breaking

    Fast multipole networks

    Full text link
    Two prerequisites for robotic multiagent systems are mobility and communication. Fast multipole networks (FMNs) enable both ends within a unified framework. FMNs can be organized very efficiently in a distributed way from local information and are ideally suited for motion planning using artificial potentials. We compare FMNs to conventional communication topologies, and find that FMNs offer competitive communication performance (including higher network efficiency per edge at marginal energy cost) in addition to advantages for mobility

    Coulomb Interactions via Local Dynamics: A Molecular--Dynamics Algorithm

    Full text link
    We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented.Comment: 8 figure

    Immunocytochemical localization of the neuron-specific form of the c-src gene product, pp60c-src(+), in rat brain

    Get PDF
    Neurons express high levels of a variant form of the c-src gene product, denoted pp60c-src(+), which contains a 6 amino acid insert in the amino-terminal half of the c-src protein. We have determined the localization of pp60c-src(+) in neurons using an affinity-purified anti-peptide antibody, referred to as affi-SB12, that exclusively recognizes this neuron-specific form of the c-src gene product. Using affi-SB12, we examined the distribution of pp60c-src(+) by immunoperoxidase staining of sections through adult rat brains, pp60c-src(+) was widely distributed in rat brain and appeared to be differentially expressed in subpopulations of neurons. The majority of immunoreactive neurons was found in the mesencephalon, cerebellum, pons, and medulla. Telencephalic structures that contained substantial populations of pp60c-src(+)-immunoreactive neurons included layer V of the cerebral cortex and the ventral pallidum. Within individual neurons, pp60c-src(+) immunoreactivity was localized to the cell soma and dendritic processes, while labeling of axons and nerve terminals (puncta) was not as readily detected. Dense accumulations of immunoreactive axons were rare, being most prominent in portions of the inferior and superior olive, and in the spinal trigeminal nucleus. While the regional distribution of pp60c-src(+) immunoreactivity does not correlate with any specific neuronal cell type or first messenger system, this unique pattern of expression of pp60c-src(+) suggests the existence of a previously uncharacterized functional organization within the brain. Furthermore, the localization of this neuron-specific tyrosine kinase in functionally important areas of the nerve cell, namely, dendritic processes, axons, and nerve terminals, suggests that pp60c-src(+) may regulate pleiotropic functions in specific classes of neurons in the adult central nervous system

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Colloquium: Trapped ions as quantum bits -- essential numerical tools

    Full text link
    Trapped, laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well known Hamiltonian. In this colloquium, we present powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap. We then delve into solving inverse problems, when optimizing trapping potentials for ions. Our presentation is complemented by a quantum mechanical treatment of the wavepacket dynamics of a trapped ion. Efficient numerical solvers for both time-independent and time-dependent problems are provided. Shaping the motional wavefunctions and optimizing a quantum gate is realized by the application of quantum optimal control techniques. The numerical methods presented can also be used to gain an intuitive understanding of quantum experiments with trapped ions by performing virtual simulated experiments on a personal computer. Code and executables are supplied as supplementary online material (http://kilian-singer.de/ent).Comment: accepted for publication in Review of Modern Physics 201
    corecore