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Abstract

Many problems in physics and engineering require the solution of the forced heat equation,

ut−∆u = F (x, u, t), with Dirichlet boundary conditions. In this thesis, we solve such PDEs

in two-dimensional, multiply-connected domains, with a twice-continuously differentiable

boundary. We discretize the partial differential equation (PDE) in time, known as Rothe’s

method, leading to the modified Helmholtz equation, u(x) − α2∆u(x) = g(x, t). At each

time step, solutions are written as the sum of a volume potential and a solution of u(x) −
α2∆u(x) = 0 with appropriate boundary conditions.

The solution of the homogeneous PDE is written as a double layer potential with un-

known density function. The density function satisfies a Fredholm integral equation of

the second kind. Some advantages of integral equation methods are: the unknown func-

tion is defined only on the boundary of the domain, complex physical boundaries are easy

to incorporate, the ill-conditioning associated with discretizing the governing equations is

avoided, high-order accuracy is easy to attain, and far-field boundary conditions are handled

naturally. The integral equation is discretized at N points with a high-order, hybrid Gauss-

trapezoidal rule resulting in a dense N × N linear system. The linear system is solved

using the generalized minimal residual method (GMRES). If the required matrix-vector

multiplication is done directly, O(N2) operations are required. This is reduced to O(N)

or O(N logN) using the fast multipole method (FMM). To demonstrate the versatility of

integral equation methods, the homogeneous problem is solved in bounded and unbounded,

as well as simply- and multiply-connected domains.

The volume integral is computed using a previously developed fast multipole-accelerated

fourth-order method. This work is extended to general bounded domains and is coupled

with the double layer potential.
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Applying Rothe’s method coupled with integral equation methods is tested on a col-

lection of forced heat equation problems. This includes the homogeneous heat equation, a

forced linear heat equation, and the Allen-Cahn equation.

Keywords:

Forced heat equation; Rothe’s method; layer potentials; high-order quadrature; fast multi-

pole method; volume integrals
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Chapter 1

Introduction

Many problems in science and engineering require the solution of partial differential equa-

tions (PDEs). Integral equation methods offer an attractive alternative to conventional

finite difference, finite element, and spectral methods for finding numerical solutions. They

offer several notable advantages: complex boundaries are handled naturally, high-order ac-

curacy is easier to attain, the correct boundary conditions at infinity are guaranteed, and

ill-conditioning associated with directly discretizing the PDE is avoided. Nevertheless, since

discretizations of integral equations result in dense linear systems, these methods have been

less popular than others. However, with the advancement of fast algorithms, integral equa-

tion methods have become popular for solving large-scale problems.

1.1 The Heat Equation

Many PDEs of interest involve the heat operator

∂

∂t
− β2∆.

We consider the general forced heat equation

ut(x, t) − β2∆u(x, t) = F (x, u, t), x ∈ Ω, t > 0, (1.1a)

u(x, t) = f(x, t), x ∈ Γ, t > 0, (1.1b)

u(x, 0) = u0(x), x ∈ Ω. (1.1c)

The domain Ω ⊂ R
2 may be bounded or unbounded, simply- or multiply-connected, and

has a twice-continuously differentiable boundary Γ. Applications arise in fluid dynamics,

1



CHAPTER 1. INTRODUCTION 2

pattern formation, and variational problems. Several choices for β2 and F are:

• F = 0 and β2 = κ is the homogeneous heat equation, where κ is the thermal diffusivity.

• F = F (x, t) and β2 = κ is the heat equation with an external force.

• F = u(1 − u2) and β2 = ǫ≪ 1 is the Allen-Cahn equation.

• The system

f(u) =

(
a− (b+ 1)u+ u2v

bu− u2v

)
,

where

u =

(
u

v

)
and β2 =

(
Du 0

0 Dv

)

is the Brusselator. By manipulating the parameters a, b, Du, and Dv, the Brusselator

can go through both Turing and Hopf bifurcations.

• The system

f(u) =

(
F (u, v)

G(u, v)

)
,

where u and β2 are defined the same as the Brusselator is a general two-component

reaction-diffusion system. Possible applications include population dynamics and pat-

tern formation.

• F (u) = v·▽u, where v is a velocity field, and β2 is a physical constant is the advection-

diffusion problem

Du

Dt
= β2∆u.

This PDE is important in many fluid dynamic applications.

1.2 Time Discretization

The goal of this thesis is to develop integral equation methods for numerically solving (1.1).

One common approach is the method of lines which discretizes the spatial derivatives
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of (1.1). The result is a system of coupled ordinary differential equations which are solved

using a time-stepping scheme. Instead, we first discretize the time derivative of (1.1). This

approach is known as Rothe’s method and the result is an elliptic PDE that must be solved

at each time step.

The time derivative can be discretized with linear multistep methods, Runge-Kutta

methods, spectral deferred correction methods [19, 33, 34], or Implicit-Explict (IMEX)

methods [4]. Often, large time steps can be taken if the diffusion term in (1.1a) is treated

implicitly. Regardless of the time-stepping method, when the diffusion is treated implicitly,

the resulting PDE is the modified Helmholtz equation

(1 − α2∆)uN+1 = b, (1.2)

where α2 = O(dt), b = b(x, tN , . . . , tN−p+1, uN , . . . , uN−p+1), tN = Ndt, and uN (x) =

u(x, tN ). The number of previous time steps required, denoted here by p, depends on the

time-stepping method and dt is the time step size.

In general, an integral equation formulation for the modified Helmholtz equation will

require a layer potential and a volume integral. In this thesis, we couple two fast com-

putational tools for the operator (1 − α2∆). In [17], Cheng et. al. present a fast direct

solver for (1.2) in the two-dimensional unit square. The solution is expressed as a vol-

ume integral and is accelerated using the fast multipole method (FMM). In [37], Kropinski

and Quaife present fast, well-conditioned integral equation methods for solving the homoge-

neous modified Helmholtz equation in bounded and unbounded multiply-connected domains.

By coupling these methods, we solve (1.2) with Dirichlet boundary conditions in bounded

multiply-connected domains.

1.3 Literature Review

The development of integral equations has focused largely on elliptic PDEs. Arguably, the

most studied problems are Laplace’s equation ∆u = 0 [24], Poisson’s equation ∆u = f [20],

and the Helmholtz equation ∆u + k2u = 0 [44]. There is literature on integral equation

methods for the heat equation [9, 28, 29], but these equations require a full space-time history

of the solution. Moreover, extendign these methods to more general PDEs is difficult or

impossible.
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There is previous work that uses integral equations to solve PDEs that arise from ap-

plying Rothe’s method to time-dependent problems. For instance, the unsteady Stokes

equations [11, 13], the unsteady incompressible Navier-Stokes equations [10, 38], and the

homogeneous heat equation [14] have all been studied. More recently, Rothe’s method has

been applied to the forced heat equation (1.1) in [36].

Chapko and Kress [14] present an integral equation formulation for the heat equation

(F = 0) that is free of volume integrals. Chapko applies a similar approach in [13] to the

unsteady Stokes equations. However, these methods rely on homogeneous equations with

homogeneous initial conditions. We are interested in a much broader class of problems.

Methods in this thesis closely resemble methods presented by Biros et. al. [11] for the

Stokes equation which were extended to the Navier-Stokes equations in [10]. However, their

work computes the volume integral using locally corrected finite difference stencils designed

by Mayo [41]. These stencils account for jumps in the solution values across the interface of

physical boundaries. The methods in [10, 11, 41] are two-dimensional and second-order, but

this approach has been extended to fourth-order and three dimensions [43, 42]. While this

method is much simpler than a volume integral, and is easily extended to three dimensions,

it tends to impose severe time step restrictions. In the case of the Navier-Stokes equations,

there is some indication that the differencing of the convection term leads to severe time step

constraints as the Reynolds number increases [10]. In [38], the authors apply Rothe’s method

to the Navier-Stokes equations in the unit circle. They use a purely integral formulation,

and the time step constraint is less problematic.

Fast algorithms have been developed for integral equations for a variety of elliptic bound-

ary value problems. The FMM is one such method that was first developed by Greengard

and Rokhlin [30]. An early example of its applications to integral equation is the work of

Greenbaum et. al. [24] for Laplace’s equation. Similar tools have been developed for Pois-

son’s equation [20], Stokes equations [11, 26], and the modified Helmholtz equation [17, 37].

The development of corresponding fast algorithms for time-dependent problems is con-

siderably more complex. There is literature for integral equations methods for the homoge-

neous heat equation. These rely on the heat kernel and thus require an integration in time

and space [28, 29]. Methods that rely on a fast Gauss transform are discussed in [9, 47].

This thesis extends the methods outlined in [36] where the authors use Rothe’s method

to solve (1.1) with an added restriction: they require the forcing term b and the Dirichlet

boundary condition be constant at each time step. Extending this work to more general
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forcing terms and boundary conditions is discussed in Chapter 4.

1.4 Outline of Thesis

In Chapter 2, we demonstrate, by example, that the modified Helmholtz equation results

from temporal discretizations of (1.1). We then focus on the homogeneous problem

(1 − α2∆)u = 0, x ∈ Ω,

with either Dirichlet or Neumann boundary conditions, and either bounded or unbounded

multiply-connected domains. This boundary value problem is recast as a boundary integral

equation using standard potential theory. We establish uniqueness and existence of solutions

of the boundary value problems and integral equations.

In Chapter 3, we present numerical methods for solving the integral equations from

Chapter 2. The trapezoidal rule and high-order quadrature rules are both used to discretize

the integral equations. The errors of these methods and properties of the resulting linear

system are discussed. A near-singular integration is used to bound the error of u uniformly

in Ω. Several examples that demonstrate the methods’ robustness and high-order accuracy

are presented.

In Chapter 4, we outline methods from [17] used to solve (1.2) in the absence of boundary

conditions. We couple this method with methods developed in Chapters 2 and 3 to impose

the desired boundary conditions. This requires extending functions from a bounded set Ω

to a box containing Ω in a smooth fashion. Several examples demonstrate the expected

accuracy.

In Chapter 5, the fast multipole method is presented. We alter the fast multipole method

from [17] to develop a fast solver used to iteratively solve linear systems from Chapter 3.

Comparisons of timings demonstrate the speedup.

Finally, Chapter 6 presents future directions and conclusions.



Chapter 2

The Modified Helmholtz Equation

In this chapter, we begin by showing in Section 2.1 how the modified Helmholtz equa-

tion (1.2) arises from two different IMEX temporal discretizations of (1.1). Such methods

treat diffusion implicitly and nonlinearities explicitly to help avoid severe time step restric-

tions. At this point, it becomes apparent that regardless of which IMEX time-stepping

method from [4] is used, the resulting PDE is always the modified Helmholtz equation.

Then, in Section 2.2, we establish that solutions of the modified Helmholtz equation are

unique in bounded and unbounded domains. For unbounded domains, we require an ap-

propriate condition at infinity which is found using the Kelvin transform. We then find the

fundamental solution.

We use the fundamental solution to introduce layer potentials in Section 2.3. In partic-

ular, we define the single layer potential and the double layer potential. Potential theory is

used to recast the modified Helmholtz equation as a boundary integral equation. We show

that Fredholm integral equations of the second kind result from the single layer potential if

the boundary condition is Neumann, and, from the double layer potential if the boundary

condition is Dirichlet. In Section 2.4, we prove existence and uniqueness of solutions of

these second kind integral equations. These proofs rely on the compactness of the integral

operators and the Fredholm Alternative. The existence of solutions of the integral equation

establishes existence of solutions of the modified Helmholtz equation.

In Section 2.5, we discuss key differences between results in this chapter and parallel

results for standard potential theory applied to Laplace’s equation. We also compare and

contrast the integral equations from Section 2.3 and discuss how similarities can be exploited

in numerical solvers.

6



CHAPTER 2. THE MODIFIED HELMHOLTZ EQUATION 7

2.1 Implicit-Explicit Methods

Our general strategy for solving (1.1) is to discretize in time, known as Rothe’s method, and

then solve the resulting PDE at each time step. One class of temporal discretizations that

can be applied to (1.1) is the IMEX method [4]. A general theme of these methods is implicit

treatment of stiff terms, in this case the diffusion, and explicit treatment of nonlinear terms.

IMEX methods ranging from first- to fourth-order are outlined in [4].

Here, we give two IMEX methods. We let dt be the size of the time step, tN = Ndt,

and uN (x) = u(x, tN ). The simplest IMEX scheme is the first-order IMEX Euler method

1

dt

(
uN+1 − uN

)
= β2∆uN+1 + F (uN ). (2.1)

A second-order method is the extrapolated Gear method

1

2dt

(
3uN+1 − 4uN + uN−1

)
= 2F (uN ) − F (uN−1) + β2 ∆uN+1. (2.2)

Upon rearranging (2.1),

(1 − β2dt∆)uN+1 = uN + dtF (uN ), (2.3)

and rearranging (2.2),
(

1 − β2 2dt

3
∆

)
uN+1 =

1

3
(4uN − uN−1) +

2dt

3
(2F (uN ) − F (uN−1)). (2.4)

In the case of IMEX Euler, if we define

α2 = β2dt, b = uN + dtF (uN ),

and in the case of extrapolated Gear, if we define

α2 = β2 2dt

3
, b =

1

3
(4uN − uN−1) +

2dt

3
(2F (uN ) − F (uN−1)),

both (2.3) and (2.4) result in the PDE

(1 − α2∆)uN+1 = b. (2.5)

In fact, using any IMEX method outlined in [4] results in the PDE (2.5), where α2 > 0

and b = b(x, tN , . . . , tN−p+1, uN , . . . , uN−p+1). The number of previous time steps, denoted

here by p, depends on the time integration scheme. For IMEX Euler, p = 1, while for

extrapolated Gear, p = 2.
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2.2 The Modified Helmholtz Equation

Assume that Ω is an open, bounded, multiply-connected subset of R
2. Furthermore, as-

sume Γ := ∂Ω has at least two continuous derivatives and write ν for the unit outward

normal vector. An illustration of a bounded and unbounded multiply-connected domain is

in Figure 2.1.

To use more standard notation, equation (2.5) is written as

(1 − α2∆)u = g, x ∈ Ω, (2.6a)

u = f, x ∈ Γ, (2.6b)

and is called the modified Helmholtz equation. Solving (2.6) is the main goal of this thesis.

Many applications have a boundary condition for the normal derivative, so we also consider

the Neumann problem

(1 − α2∆)u = g, x ∈ Ω, (2.7a)

∂u

∂ν
= f, x ∈ Γ. (2.7b)

ν

ν

Γ0

Γ1

Γ2

Γ3

ΓM

...

Figure 2.1: The left plot is a bounded multiply-connected domain Ω (shaded region). The
outer boundary is denoted by Γ0 and the interior component curves by Γ1, . . . ,ΓM . The
unit normal ν points out of Ω on each component curve. The right plot is an unbounded
2-ply-connected domain Ω (everything outside the truck and the person). The unit normal
points into each of the component curves.
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2.2.1 Uniqueness of Solutions

We check that solutions of (2.6) are unique; existence will follow once we have recast (2.6)

as a solvable integral equation. We start by assuming that Ω is bounded and assume that

u1 and u2 both solve (2.6). Then, w := u1 − u2 satisfies

(1 − α2∆)w = 0, x ∈ Ω, (2.8a)

w = 0, x ∈ Γ. (2.8b)

We multiply (2.8a) by w, integrate over Ω, and apply Green’s first identity

0 =

∫

Ω
w2dx− α2

∫

Ω
w∆wdx

=

∫

Ω
w2dx− α2

(∫

Γ
w
∂w

∂ν
ds −

∫

Ω
|▽w|2dx

)

=

∫

Ω
w2dx + α2

∫

Ω
|▽w|2dx,

which implies that w = 0 and thus u1 = u2. The same argument can be used to establish

uniqueness of solutions of (2.7), or a problem with a combination of Neumann and Dirichlet

boundary conditions.

Let Ω be unbounded. Uniqueness of solutions requires a condition for the behavior of u

at infinity. We use a standard technique to uncover this behavior. Without loss of generality,

assume that 0 /∈ Ω and define the Kelvin transform

T : R
2 ∪ {∞} → R

2 ∪ {∞},

Tx =





x

|x|2 , x 6= 0 or ∞,

0, x = ∞,

∞, x = 0.

Since Ω is unbounded, T (Ω) = {Tx | x ∈ Ω} is bounded. A standard application of the

chain rule shows that if u⋆(x) = u(Tx), then

∆u⋆(x) =
1

|x|4 ∆u(Tx).

Applying the Kelvin transform to (2.6) gives

(1 − α2|x|4∆)u⋆ = g⋆, x ∈ T (Ω),

u⋆ = f⋆, x ∈ T (Γ),
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where f⋆(x) = f(Tx) and g⋆(x) = g(Tx). In order to show that solutions of this PDE are

unique, we again assume u1 and u2 are solutions and let w = u1 − u2. Then, w satisfies

(1 − α2|x|4∆)w = 0, x ∈ T (Ω),

w = 0, x ∈ T (Γ).

By substituting x = 0 ∈ T (Ω), we have w(0) = 0. Now, we multiply by w/|x|4, integrate

over T (Ω)ǫ := {x ∈ T (Ω) | |x| > ǫ}, and apply Green’s first identity

0 =

∫

T (Ω)ǫ

1

|x|4w
2dx − α2

∫

T (Ω)ǫ

w∆wdx

=

∫

T (Ω)ǫ

1

|x|4w
2dx − α2

(∫

|x|=ǫ
w
∂w

∂ν
ds+

∫

T (Γ)
w
∂w

∂ν
ds−

∫

T (Ω)ǫ

|▽w|2dx
)

(2.9)

=

∫

T (Ω)ǫ

1

|x|4w
2dx + α2

∫

T (Ω)ǫ

|▽w|2dx.

The first boundary integral in (2.9) vanishes as ǫ→ 0 since w(0) = 0 and the second vanishes

because of the boundary condition. The result is that w = 0 in Ωǫ for ǫ > 0 guaranteeing

that w = 0 in T (Ω). We have just proved the following theorem.

Theorem 2.1 Let Ω be an unbounded simply- or multiply-connected domain. If a solution

of

(1 − α2∆)u = g, x ∈ Ω,

u = f, x ∈ Γ,

lim
R→∞

sup
|x|>R

u(x) = 0,

exists, it is unique. If Ω is bounded, the condition at infinity is omitted. Moreover, if the

boundary condition is Neumann, the result still holds.

A key difference between Laplace’s equation and the modified Helmholtz equation concerns

the uniqueness of solutions for the Neumann problem, and the compatibility constraint of

the boundary data. Solutions of Laplace’s equation with a Neumann boundary condition

are not unique. If u is a solution, so is u + c for any c ∈ R. Also, if f is the Neumann

boundary condition of Laplace’s equation, it must satisfy the compatibility constraint
∫
Γ f =

0. Solutions of the modified Helmholtz equation are unique and there are no restrictions on

the boundary condition.
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2.2.2 The Fundamental Solution

To develop integral equation methods for the modified Helmholtz equation, we require the

fundamental solution, sometimes called the free-space Green’s function, of the operator

(1 − α2∆). This is the function G satisfying, in the weak sense,

(1 − α2∆)G = δ, x ∈ R
2, (2.10)

lim
R→∞

sup
|x|>R

G(x) = 0, (2.11)

where δ is the delta distribution. In this thesis, the fundamental solution has two purposes.

First, it will be used in Section 2.3 to formulate solution ansätze for the homogeneous

modified Helmholtz equation. Then, in Chapter 4, it will be used to form a solution of

the modified Helmholtz equation in the absence of boundary conditions. The condition at

infinity (2.11) guarantees that solutions of the modified Helmholtz equation in unbounded

domains will decay to 0 at infinity.

We imitate [21] where the fundamental solution of Laplace’s equation is constructed.

Since (1 − α2∆) is rotationally invariant, we assume that G = G(r), where r =
√
x2 + y2.

In polar coordinates, (2.10) reduces to

G− α2

(
Grr −

1

r
Gr

)
= δ.

For r 6= 0,

G(r) = c1K0

( r
α

)
+ c2I0

( r
α

)
,

where K0 and I0 are the modified Bessel functions of order 0 of the first kind and second

kind, respectively. Since I0 is unbounded at infinity, we let c2 = 0 so that (2.11) is satisfied.

In the next theorem, we find the correct value for c1.

Before we find this value, we define B(0, r) = {x ∈ R
2 | |x| < r}, the open ball centered

at 0 of radius r. We also write a(ǫ) . b(ǫ) whenever a(ǫ) < cb(ǫ) with c independent of ǫ.

Finally, we require the following formulas found in [1]. For z > 0,

zK0

( z
α

)
= O(z log z), z ≪ 1,

zK1

( z
α

)
= α+ O(z2 log z), z ≪ 1,

d

dz
K0

( z
α

)
= − 1

α
K1

( z
α

)
,

∫
zK0

( z
α

)
dz = −αz K1

( z
α

)
.



CHAPTER 2. THE MODIFIED HELMHOLTZ EQUATION 12

Theorem 2.2 The fundamental solution of (1 − α2∆) is

G(x) =
1

2πα2
K0

( |x|
α

)
.

Proof We closely follow the proof in [21]. Let f ∈ C2(R2) have compact support and define

v(x) :=

∫

R2

G(x − y)f(y)dy =

∫

R2

G(y)f(x − y)dy.

Our goal is to show that (1 − α2∆)v(x) = f(x). We begin by computing the Laplacian of

v. Letting ǫ > 0,

∆v(x) =

∫

R2

G(y)∆xf(x− y)dy

=

∫

R2\B(0,ǫ)
G(y)∆xf(x− y)dy +

∫

B(0,ǫ)
G(y)∆xf(x− y)dy

= Aǫ +Bǫ. (2.12)

Since f ∈ C2, we can bound |Bǫ| by

|Bǫ| .

∫

B(0,ǫ)
K0

( |y|
α

)
dy

=

∫ ǫ

0
K0

( r
α

)
rdr

= αrK1

( r
α

)∣∣∣
0

ǫ

= α2 − αǫK1

( ǫ
α

)

= α2 − α(α + O(ǫ2 log ǫ))

= O(ǫ2 log ǫ). (2.13)

We next apply Green’s first identity to Aǫ

Aǫ =

∫

R2\B(0,ǫ)
G(y)∆xf(x− y)dy

=

∫

R2\B(0,ǫ)
G(y)∆yf(x− y)dy

= −
∫

R2\B(0,ǫ)
▽yG(y) · ▽yf(x− y)dy +

∫

∂B(0,ǫ)
G(y)

∂f(x − y)

∂νy
dsy

= Cǫ +Dǫ. (2.14)
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We bound |Dǫ| by

|Dǫ| .

∫

∂B(0,ǫ)
K0

( r
α

)
dsy

= K0

( ǫ
α

)
2πǫ

= O(ǫ log ǫ). (2.15)

Next,

v(x) =

∫

R2\B(0,ǫ)
G(y)f(x − y)dy +

∫

B(0,ǫ)
G(y)f(x − y)dy

= Eǫ + Fǫ. (2.16)

We bound |Fǫ| exactly the same as |Bǫ|

|Fǫ| . O(ǫ2 log ǫ). (2.17)

Only Cǫ and Eǫ remain when ǫ→ 0, so we compute

Eǫ − α2Cǫ =

∫

R2\B(0,ǫ)
G(y)f(x − y)dy + α2

∫

R2\B(0,ǫ)
▽yG(y) · ▽yf(x− y)dy

=

∫

R2\B(0,ǫ)
G(y)f(x − y)dy

+ α2

∫

∂B(0,ǫ)

∂G

∂νy
f(x− y)dsy − α2

∫

R2\B(0,ǫ)
∆yG(y)f(x − y)dy

=

∫

R2\B(0,ǫ)
(1 − α2∆)G(y)f(x − y)dy + α2

∫

∂B(0,ǫ)

∂G

∂νy
f(x− y)dsy

= α2

∫

∂B(0,ǫ)

∂G

∂νy
f(x− y)dsy

=
α2

2πα2

∫

∂B(0,ǫ)

∂

∂νy
K0

( |y|
α

)
f(x− y)dsy

= − 1

2π

∫

∂B(0,ǫ)

1

α|y|K1

( |y|
α

)
y · νyf(x− y)dsy.

The region of integration is exterior to B(0, ǫ), so νy = −y/|y|, and

Eǫ − α2Cǫ =
1

2π

∫

∂B(0,ǫ)

1

α|y|K1

( |y|
α

)
y · y

|y|f(x− y)dsy

=
1

2πǫ
K1

( ǫ
α

) ǫ
α

∫

∂B(0,ǫ)
f(x− y)dsy. (2.18)
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Since zK1(z) → 1 as z → 0, combining (2.12)–(2.18),

(1 − α2∆)v(x) = lim
ǫ→0

1

2πǫ

∫

∂B(0,ǫ)
f(x− y)dsy

=
1

2πǫ
2πǫf(x)

= f(x).

In other words,

(1 − α2∆)G(x) = δ(x)

in the weak sense. 2

In order to derive integral equations for the modified Helmholtz equation, we must under-

stand the behavior of G at 0. We use well-known results for Laplace’s fundamental solution

in combination with the asymptotic expansion [1]

K0(z) = − log
(z

2

)
− log

(z
2

) ∞∑

n=1

1

(n!)2

(
z2

4

)n

+ γ

(
1 +

∞∑

n=1

1

(n!)2

(
z2

4

)n
)

+
∞∑

n=1

(
1 +

1

2
+ · · · + 1

n

)
1

(n!)2

(
z2

4

)n

,

or in a more compact form,

K0(z) = − log
(z

2

)
+ p(z) log

(z
2

)
+ q(z). (2.19)

The lowest order term of p(z) is z2 and γ is Euler’s constant. The principal result is that

K0(z) has a logarithmic-type singularity at z = 0. When forming integral equations, this

will allow us to use results of integral equations for Laplace’s equation.

2.3 Layer Potentials

Our strategy for solving (2.6) is to write its solution as the sum of a forced problem and a

homogeneous problem. First, we find a solution for the forced problem

(1 − α2∆)uP = g, x ∈ Ω. (2.20)
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Boundary conditions are not specified, therefore, solutions are not unique. However, we

can take any solution of (2.20) that we wish; we discuss one possible solution of (2.20) in

Chapter 4. We impose the boundary conditions by solving the homogeneous problem

(1 − α2∆)uH = 0, x ∈ Ω,

uH = f − uP , x ∈ Γ.

Then, u = uP + uH solves (2.6). Upon redefining f , the homogeneous problem becomes

(1 − α2∆)uH = 0, x ∈ Ω, (2.21a)

uH = f, x ∈ Γ. (2.21b)

If we have a Neumann boundary condition, the homogeneous problem is

(1 − α2∆)uH = 0, x ∈ Ω, (2.22a)

∂uH

∂ν
= f, x ∈ Γ. (2.22b)

The remainder of this chapter is dedicated to solving (2.21) and (2.22). A layer potential

is an ansatz for the solution of the homogeneous modified Helmholtz equation. It recasts

the PDE as a boundary integral equation. The two most common layer potentials, both of

which are discussed next, are the single layer potential and double layer potential.

2.3.1 Single Layer Potential

The single layer potential is the integral operator S[σ] : Ω → R, where

S[σ](x) =
1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y) dsy. (2.23)

The single layer potential takes a function σ : Γ → R, which we call a density function,

and returns a real-valued function defined on Ω. We assume that σ ∈ C(Γ), the space of

continuous functions, so that (2.23) is well-defined. Defining the kernel of S[σ] to be

K(y,x) =
1

2πα2
K0

( |y − x|
α

)
,

the single layer potential can be written as

S[σ](x) =

∫

Γ
K(y,x)σ(y)dsy .

We begin by showing that, regardless of σ, the single layer potential satisfies the modified

Helmholtz equation. The function σ is later used to satisfy the boundary condition.
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Theorem 2.3 If σ ∈ C(Γ), then

uH(x) =
1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy (2.24)

solves (2.21a).

Proof For x ∈ Ω,

(1 − α2∆)uH(x) = (1 − α2∆)
1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy.

When x /∈ Γ, the integrand is bounded, so, the integral and derivatives can be interchanged

(1 − α2∆)uH(x) =
1

2πα2

∫

Γ
(1 − α2∆)K0

( |y − x|
α

)
σ(y)dsy

=

∫

Γ
δ(y − x)σ(y)dsy

= 0.

2

The single layer potential satisfies (2.21a), but we have not imposed the boundary condi-

tion (2.21b). The boundary condition is satisfied by taking the limit of (2.24) as x → x0

and equating it with f(x0). That is, we find σ such that

lim
x→x0

x∈Ω

1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy = f(x0)

for all x0 ∈ Γ. To compute this limit, we use the jump condition for the logarithmic

kernel [23, Prop 3.25]. For any x0 ∈ Γ,

lim
x→x0

x∈Ω

1

2π

∫

Γ
log |y − x|σ(y)dsy =

1

2π

∫

Γ
log |y − x0|σ(y)dsy. (2.25)

Theorem 2.4 Suppose that σ satisfies

f(x0) =
1

2πα2

∫

Γ
K0

( |y − x0|
α

)
σ(y)dsy.

Then, the single layer potential (2.24) satisfies (2.21a) and (2.21b).
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Proof We have already shown that the single layer representation (2.24) satisfies (2.21a).

We use (2.19) and (2.25) to show that it satisfies the boundary condition (2.21b)

lim
x→x0
x∈Ω

uH(x) = lim
x→x0
x∈Ω

1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy

= − lim
x→x0

x∈Ω

1

2πα2

∫

Γ
log

( |y − x|
2α

)
σ(y)dsy

− lim
x→x0

x∈Ω

1

2πα2

∫

Γ
p

( |y − x|
α

)
log

( |y − x|
2α

)
σ(y)dsy

+ lim
x→x0
x∈Ω

1

2πα2

∫

Γ
q

( |y − x|
α

)
σ(y)dsy

= − 1

2πα2

∫

Γ
log

( |y − x0|
2α

)
σ(y)dsy

− 1

2πα2

∫

Γ
p

( |y − x0|
α

)
log

( |y − x0|
2α

)
σ(y)dsy

+
1

2πα2

∫

Γ
q

( |y − x0|
α

)
σ(y)dsy

=
1

2πα2

∫

Γ
K0

( |y − x0|
α

)
σ(y)dsy.

The first limit is evaluated using (2.25). Since p(z) log(z) and q(z) are bounded at z = 0,

the second and third limits follow since the integrand is bounded. 2

To solve the Neumann problem (2.22), we require the normal derivative of the single

layer potential,

lim
x→x0
x∈Ω

∂

∂νx
S[σ](x) = lim

x→x0
x∈Ω

∂

∂νx

1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy.

We have written ∂
∂νx

for a point x ∈ Ω, but the normal vector is only defined on Γ. To

alleviate this problem, we follow the procedure outlined in [23]. We define the tubular

neighborhood, a set T ⊂ Ω of points near Γ. It is constructed so that for all x ∈ T , there is

exactly one point x0 ∈ Γ with the property that the normal vector −νx
0

passes through x

(see Figure 2.2). With this unique point, we define νx = νx
0
.
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x

T

x

x0

Figure 2.2: The bold line is a subset
of Γ and the normal vectors are drawn
at several points. The normal vec-
tors intersect each other sufficiently
far from Γ (left plot). However, if
we define T as illustrated in the right
plot, the normal vectors do not inter-
sect. Thus, with each point x ∈ T , we
can associate a unique point x0 ∈ Γ
and then define νx = νx

0
.

Now, we require the jump condition for the normal derivative of the single layer potential

with logarithmic kernel [23, Lemma 3.30]

lim
x→x0
x∈Ω

∂

∂νx

1

2π

∫

Γ
log(|y − x|)σ(y)dsy

= −1

2
σ(x0) +

1

2π

∫

Γ

∂

∂νx
0

log(|y − x0|)σ(y)dsy. (2.26)

Theorem 2.5 Suppose that σ satisfies

f(x0) =
1

2α2
σ(x0) +

1

2π

∫

Γ

∂

∂νx
0

K0

( |y − x0|
α

)
σ(y)dsy. (2.27)

Then, the single layer potential (2.24) satisfies (2.22a) and (2.22b).

Proof This is almost identical to the proof of Theorem 2.4. It requires (2.26) instead

of (2.25). 2

2.3.2 Double Layer Potential

The double layer potential D[σ] : Ω → R is

D[σ](x) =
1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y) dsy. (2.28)

We again assume that σ ∈ C(Γ) to guarantee that (2.28) is well-defined. Computing the

normal derivative,

D[σ](x) = − 1

2πα2

∫

Γ
K1

( |y − x|
α

)
(y − x) · νy
α|y − x| σ(y)dsy.



CHAPTER 2. THE MODIFIED HELMHOLTZ EQUATION 19

The kernel of the double layer potential is

K(y,x) = − 1

2πα2

∂

∂νy
K0

( |y − x|
α

)
.

Again, the double layer potential automatically satisfies the modified Helmholtz equation.

The function σ is determined by the boundary condition.

Theorem 2.6 Let σ ∈ C(Γ). Then,

uD(x) =
1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy (2.29)

solves (2.21a).

Proof For x ∈ Ω,

(1 − α2∆)uD(x) = (1 − α2∆)
1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy.

When x /∈ Γ, the integrand is bounded, so, the integral and derivatives can be interchanged.

Also, the Laplacian and the normal derivative can be interchanged since K0(|y − x|) is

smooth away from its singularity. Thus,

(1 − α2∆)uD(x) =
1

2πα2

∫

Γ

∂

∂νy
(1 − α2∆)K0

( |y − x|
α

)
σ(y)dsy

=

∫

Γ

∂

∂νy
δ(y − x)σ(y)dsy

= 0.

2

The double layer potential satisfies (2.21a), but we have not imposed the boundary

condition (2.21b). The boundary condition is satisfied by taking the limit of (2.29) as

x → x0 and equating it with f(x0). That is, we find σ such that

lim
x→x0

x∈Ω

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy = f(x0)

for all x0 ∈ Γ. To compute this limit, we use the jump condition for the logarithmic

kernel [23, Thm 3.22] or [35, pg 173–4]. For any x0 ∈ Γ,

lim
x→x0

x∈Ω

1

2π

∫

Γ

∂

∂νy
log |y − x|σ(y)dsy =

1

2
σ(x0) +

1

2π

∫

Γ

∂

∂νy
log |y − x0|σ(y)dsy. (2.30)
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Theorem 2.7 Suppose that σ satisfies

f(x0) = − 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy. (2.31)

Then, the double layer potential (2.29) satisfies (2.21a) and (2.21b).

Proof We have already shown that (2.29) satisfies (2.21a). We use (2.19) and (2.30) to

show that it satisfies the boundary condition (2.21b)

lim
x→x0

x∈Ω

uH(x) = lim
x→x0

x∈Ω

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy

= − lim
x→x0
x∈Ω

1

2πα2

∫

Γ

∂

∂νy
log

( |y − x|
2α

)
σ(y)dsy

− lim
x→x0

x∈Ω

1

2πα2

∫

Γ

∂

∂νy
p

( |y − x|
α

)
log

( |y − x|
2α

)
σ(y)dsy

+ lim
x→x0

x∈Ω

1

2πα2

∫

Γ

∂

∂νy
q

( |y − x|
α

)
σ(y)dsy (2.32)

= − 1

2πα2

∫

Γ

∂

∂νy
log

( |y − x0|
2α

)
σ(y)dsy − 1

2α2
σ(x0)

− 1

2πα2

∫

Γ

∂

∂νy
p

( |y − x0|
α

)
log

( |y − x0|
2α

)
σ(y)dsy

+
1

2πα2

∫

Γ

∂

∂νy
q

( |y − x0|
α

)
σ(y)dsy

= − 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy.

The last two limits in (2.32) do not exhibit any jumps since the integrand is bounded, while

the first, which results in the jump term

− 1

2α2
σ(x0),

follows from (2.30). 2

To summarize, both the single layer potential (2.24) and double layer potential (2.29) solve

the modified Helmholtz equation. We have shown that the single layer potential is a con-

tinuous function as x passes through Γ, while its normal derivative has a jump. We also

have shown that the double layer potential has a jump in its function value. We now work

towards establishing existence and uniqueness of these integral equations.
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2.4 Existence and Uniqueness of Solutions of the Integral

Equations

For numerical reasons that become apparent in Chapter 3, in this thesis, we always use the

single layer representation (2.24) when solving the Neumann problem (2.22), and we always

use the double layer representation (2.29) when solving the Dirichlet problem (2.21). This

means that we need to solve the integral equations (2.27) and (2.31). Here, we establish

existence and uniqueness of solutions to these integral equations. We first show that the

integral operators are both compact, and then establish that the homogeneous integral

equations have a trivial null space. By the Fredholm Alternative, this guarantees that

solutions exist and are unique. We discuss numerical methods to solve the integral equations

in Chapter 3.

2.4.1 Compactness of Integral Operators

To establish compactness of the integral operators, we need to understand the nature of

the singularities of the layer potentials when x ∈ Γ. Earlier we assumed that Γ had at

least two continuous derivatives. This guarantees continuity of the curvature of Γ since the

curvature depends on first and second derivatives. By the following theorem, this implies

that both the kernel of the double layer potential and the normal derivative of the single

layer potential are continuous.

Theorem 2.8 The kernel of the integral operators (2.27) and (2.31) are continuous and

bounded on Γ × Γ. Moreover, for all x0 ∈ Γ,

lim
y→x0

y∈Γ

∂

∂νy
K0

( |y − x0|
α

)
= −1

2
κ(x0),

lim
y→x0

y∈Γ

∂

∂νx
0

K0

( |y − x0|
α

)
=

1

2
κ(x0),

where κ(x0) is the curvature of Γ at x0.

Proof For any x0 ∈ Γ, the kernels are continuous and bounded for all y 6= x0. The only

problematic point is y = x0. Considering the limit of the kernel of the double layer potential
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at its singularity

lim
y→x0

y∈Γ

∂

∂νy
K0

( |y − x0|
α

)

=
∂

∂νy

{
− log

( |y − x0|
2α

)
+ p(|y − x0|) log

( |y − x0|
2α

)
+ q(|y − x0|)

}

= − ∂

∂νy
log(|y − x|)

= −1

2
κ(x0),

we see that the kernel is in fact bounded there. The second and third terms vanished since

their derivatives are 0 at the origin. The final limit is a standard potential theory result

that can be found, for instance, in [18, page 199]. The limit of the normal derivative of the

single layer potential follows immediately since

lim
y→x0

y∈Γ

∂

∂νy
K0

( |y − x0|
α

)
= − lim

y→x0

y∈Γ

∂

∂νx
0

K0

( |y − x0|
α

)

2

From Theorem 2.8, both integral operators (2.27) and (2.31) have a bounded and con-

tinuous kernel. This guarantees that the integral operators are compact on C(Ω) [5, 18].

Thus, the Fredholm Alternative can be applied to discuss the existence and uniqueness of

solutions.

2.4.2 Existence and Uniqueness of the Dirichlet Problem

Recall that we are using the double layer potential representation (2.29) to solve the bound-

ary integral equation (2.31). To establish existence and uniqueness of solutions, we require

the normal derivative of the double layer potential.

As before, we first compute the normal derivative for the double layer potential with

logarithmic kernel [18, Eqn 5.7],

lim
x→x0
x∈Ω

∂

∂νx

1

2π

∫

Γ

∂

∂νy
log(|y − x|)σ(y)dsy =

1

2π

∫

Γ

∂2

∂νx
0
∂νy

log(|y − x0|)σ(y)dsy. (2.33)

That is, there is no jump in the normal derivative of the double layer potential.
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Theorem 2.9 The normal derivative the double layer potential is continuous. That is,

lim
x→x0

x∈Ω

∂

∂νx

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy =

1

2πα2

∫

Γ

∂2

∂νx
0
∂νy

K0

( |y − x0|
α

)
σ(y)dsy

Proof This is almost identical to the proof of Theorem 2.7. It requires (2.33) instead (2.30).

2

We are now able to establish existence and uniqueness of solutions of (2.31)

Theorem 2.10 Suppose that f ∈ C(Γ). Then, there exists a unique σ ∈ C(Γ) such that

f(x0) = − 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy.

That is, solutions of (2.31) exist and are unique.

Proof Assume that Ω is bounded. Solutions are guaranteed to be unique if the only solution

of

− 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy = 0 (2.34)

is σ(x0) = 0. By the Fredholm Alternative, this also guarantees the existence of a solution.

Suppose that σ ∈ C(Γ) solves (2.34) and let u(x) be the double layer potential associated

with σ

u(x) =
1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy, x ∈ Ω. (2.35)

Then, (1−α2∆)u = 0 in Ω and u = 0 on Γ. We already established uniqueness of solutions

of this PDE, so we are guaranteed that u = 0. Now consider u(x) given by (2.35) for

x ∈ R
2\Ω. Then, (1 − α2∆)u = 0 in R

2\Ω and |u(x)| → 0 as |x| → ∞. By continuity of

the normal derivative of u, u has a homogeneous Neumann boundary condition on Γ. We

established uniqueness of solutions of this PDE as well, so we are guaranteed that u = 0 in

R
2\Γ. Fixing a point x0 ∈ Γ, we consider the limit of u from both sides of Γ.

0 = lim
x→x0
x∈Ω

u(x) = − 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy

0 = lim
x→x0

x∈R
2\Ω

u(x) =
1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x0|
α

)
σ(y)dsy.

The opposing signs of the jump terms occur since the exterior problem has an inward

pointing normal. Subtracting the two equations gives σ(x0) = 0. If Ω is unbounded, the

only change to the proof is that the condition at infinity holds in Ω rather than in R
2\Ω. 2
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2.4.3 Existence and Uniqueness of the Neumann Problem

Using the single layer potential (2.24) for the Neumann problem results in the boundary

integral equation (2.27). We use the Fredholm Alternative and the continuity of the single

layer potential to establish existence and uniqueness of solutions of (2.27)

Theorem 2.11 Suppose that f ∈ C(Γ). Then, there exists a unique σ ∈ C(Γ) such that

f(x0) =
1

2α2
σ(x0) +

1

2π

∫

Γ

∂

∂νx
0

K0

( |y − x0|
α

)
σ(y)dsy.

That is, solutions of (2.27) exist and are unique.

Proof The proof is almost identical to that of Theorem 2.10. By the same argument made

earlier, we can assume that Ω is bounded. Suppose that σ solves

1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νx0

K0

( |y − x0|
α

)
σ(y)dsy = 0.

Define u(x) for x ∈ Ω by the single layer potential

u(x) =
1

2πα2

∫

Γ
K0

( |y − x|
α

)
σ(y)dsy, x ∈ Ω. (2.36)

Then, u satisfies (1 − α2∆)u = 0 in Ω with homogeneous Neumann boundary conditions,

hence, u = 0 in Ω. As we did in the Dirichlet case, we define u(x) in R
2\Ω by (2.36). As

the single layer potential is a continuous function in R
2, (1− α2∆)u = 0 in R

2\Ω, u = 0 on

Γ, and u(x) → 0 as |x| → ∞. Thus, u = 0 in R
2\Ω. Fixing a point x0 ∈ Γ, we consider the

limit of the normal derivative of u from both sides of Γ

0 = lim
x→x0

x∈Ω

∂

∂νx
0

u(x) =
1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νx
0

K0

( |y − x0|
α

)
σ(y)dsy

0 = lim
x→x0

x∈R
2\Ω

∂

∂νx
0

u(x) = − 1

2α2
σ(x0) +

1

2πα2

∫

Γ

∂

∂νx
0

K0

( |y − x0|
α

)
σ(y)dsy.

Subtracting the two equations gives σ(x0) = 0. 2

We have established both existence and uniqueness of solutions of the integral equations

corresponding to (2.21) and (2.22). Thus, we have also established existence of solutions of

the homogeneous modified Helmholtz equation.
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2.5 Summary

It is worth noting that when solving Laplace’s equation, the proofs of Theorems 2.10 and 2.11

break down when the domain is either multiply-connected or unbounded. In fact, in [18],

it is assumed that Ω is a simply-connected bounded domain. If the domain is multiply-

connected and the boundary condition is Dirichlet, then R
2\Ω contains bounded disjoint

regions. Inside each of these regions, u solves ∆u = 0 with a homogeneous Neumann

boundary condition. Since u = 0 is not the only solution to this problem, the proof breaks

down. However, for the modified Helmholtz equation, inside each of these components, u

must satisfy (1−α2∆)u = 0 with a homogeneous Neumann boundary condition. This PDE

does have a unique solution, namely u = 0. The assumption that Ω is bounded can also be

dropped when solving the modified Helmholtz equation. It is possible to formulate integral

equations to solve Laplace’s equation in multiply-connected or unbounded domains. One

such formulation, which requires the addition of Lagrange-type multipliers, is found in [24].

We have established existence and uniqueness of solutions of (2.27) and (2.31). However,

closed-form solutions hardly ever exist, thus, we resort to numerical solutions in Chapter 3.

We note here that the two integral equations we have formulated are very similar. The

first difference is the change in the sign in the jump condition. The second difference is

the variable where the normal derivative is taken. These similarities are exploited when

developing numerical solvers. In particular, a few small changes to a numerical solver

for (2.31) establishes a numerical solver for (2.27).



Chapter 3

Numerical Solutions of the Integral

Equations

We are interested in solving the integral equations that correspond to the PDEs (2.21)

and (2.22). In this chapter, we drop the superscript and write u instead of uH . With

the ansätze we have chosen, the integral equations of interest are (2.31) and (2.27). Both

equations can be written in the general form:

f(x) = λσ(x) +

∫

Γ
K(y,x)σ(y)dsy (3.1)

with λ 6= 0. Equation (3.1) is a Fredholm integral equation of the second kind with a

bounded kernel. From Chapter 2, we know a unique solution of (3.1) exists. However,

closed-form solutions are difficult or impossible to obtain. Thus, numerical solutions must

be sought.

The most straightforward discretization of (3.1) is the trapezoidal rule. We will see in

Section 3.1 that it is surprisingly accurate if the kernel K is sufficiently smooth. Unfortu-

nately, the kernels considered in this thesis are not smooth. Thus, we resort to high-order

quadrature rules designed for functions with logarithmic singularities in Section 3.2. Using

either discretization technique, if N is the total number of discretization points, the result

is a dense N ×N linear system. A solution strategy and properties of these linear systems

are discussed. Upon solving the linear system, we evaluate u(x) for x ∈ Ω since these values

are required by the volume integral at subsequent time steps. As points x ∈ Ω approach Γ,

an unbounded number of discretization points are required to maintain a uniform bound on

the error. Therefore, a near-singular integration strategy which numerically integrates the

26
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layer potentials with uniform error is introduced in Section 3.3. Several numerical examples

in Section 3.4 demonstrate the desired properties of the numerical solution.

3.1 The Trapezoidal Rule

The most naive approach to solve (3.1) is to use the trapezoidal rule. We now show that

with assumptions on the smoothness of the kernel of the integral operator, the trapezoidal

rule gives high accuracy. For an interval [a, b], the trapezoidal rule is

TN (f) =
∆x

2
f(a) + ∆x

N−1∑

i=1

f(xj) +
∆x

2
f(b)

where xj = a + j∆x and ∆x = (b − a)/N . When f ∈ C2[a, b], the trapezoidal rule is

second-order since there exists a number ξ ∈ [a, b] with
∣∣∣∣
∫ b

a
f(x)dx− TN (f)

∣∣∣∣ =
b− a

12N2
f ′′(ξ).

However, the error is significantly reduced if f is periodic. If [a, b] = [0, 2π] and f is periodic,

TN (f) = ∆x

N−1∑

j=0

f(xj)

where xj = j∆x and ∆x = 2π/N . The error is

∫ 2π

0
f(x)dx− TN (f) = 2π

∑

k∈Z

k 6=0

f̂(kN), (3.2)

where

f̂(n) =
1

2π

∫ 2π

0
f(x)e−inxdx.

Thus, the error of the trapezoidal rule decays at the same rate as the Fourier coefficients

(spectrum) of f . Equation (3.2) follows from the following well-known theorem [46].

Theorem 3.1 If n is not an integer multiple of N ,

TN (einx) = 0.

If n is an integer multiple of N ,

TN (einx) = 2π.
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Since Γk is a closed curve, continuous functions defined on Γk are periodic. Therefore,

solving (3.1) with the trapezoidal rule gives the same accuracy as a Fourier method. We

parameterize each component curve by

Γk = {rk(θ) | 0 ≤ θ < 2π}, k = 0, . . . ,M,

and use N equispaced points with respect to θ,

θi = (i− 1)∆θ, i = 1, . . . , N,

where ∆θ = 2π/N . The total number of discretization points is N(M + 1) and the trape-

zoidal rule applied to (3.1) is

f(rk(θj)) = λσ(rk(θj)) +
1

2πα2

M∑

m=0

N∑

n=1

K(rm(θn), rk(θj))σ(rm(θn))|r′m(θn)|∆θ,

where k = 0, . . . ,M and j = 1, . . . , N . If the domain is unbounded, the index for m starts

at 1 rather than 0, and there is a total of NM points. We simplify notation by writing

fk
j = f(rk(θj)),

σk
j = σ(rk(θj)),

Kk,m
j,n =

1

2πα2
K(rm(θn), rk(θj))|r′m(θn)|∆θ,

resulting in the linear system

fk
j = λσk

j +
M∑

m=0

N∑

n=1

Kk,m
j,n σm

n , k = 0, . . . ,M, j = 1, . . . , N. (3.3)

We note that the linear system corresponding to (3.3) is dense. This is a result of the kernel

K being nonzero for two arbitrary points on Γ.

The trapezoidal rule applied to (3.1) is straightforward to implement, but, it can only

converge as fast as the spectrum of the integral operator. Unfortunately, the spectrum of

integral operators involving K0 decay slowly with respect to N which we illustrate with the

following example.

Let Ω be the ellipse with radii 1 and a > 1 and let x0 = (1, 0) ∈ Γ. Then,

|y − x0|2 = (1 − a2) cos2(θ) − 2 cos(θ) + (1 + a2),

|y′|(y − x0) · νy = a− a cos(θ).
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We apply the trapezoidal rule to

f1(θ) =
∂

∂νy
log |y − x0||y′|

=
(y − x0) · νy
|y − x0|2

|y′|

=
a− a cos(θ)

(1 − a2) cos2(θ) − 2 cos(θ) + (1 + a2)

=
a

(1 + a2) − (1 − a2) cos(θ)
,

and

f2(θ) = − ∂

∂νy
K0(|y − x0|)|y′|

=
K1(|y − x0|)

|y − x0|
(y − x0) · νy|y′|

=
K1

(√
(1 − a2) cos2(θ) − 2 cos(θ) + (1 + a2)

)

√
(1 − a2) cos2(θ) − 2 cos(θ) + (1 + a2)

(a− a cos(θ))

f2(0) =
1

2a
.

f1 and f2 are kernels of the double layer potential for Laplace’s equation and the modified

Helmholtz equation evaluated at x0. We choose f2(0) so that f2 is continuous for all θ ∈
[0, 2π). The functions are illustrated in the top plots of Figure 3.1 and 3.2.
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Figure 3.1: The function f1(θ) (top) and the absolute value of its Fourier coefficients (bot-
tom) when a = 2.

When a = 2, the Fourier coefficients of f1 drop below machine precision well before

the 100th Fourier mode, thus, we expect the error of the trapezoidal rule to decay quickly
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with respect to N . The Fourier coefficients of f1 can be computed exactly using the residue

theorem. Letting C be the unit circle in the complex plane,

f̂1(n) =
1

2π

∫ 2π

0
f1(θ)e

−inθdθ

=
1

2π

∮

C

z−ndz

iz

a

(1 + a2) − 1−a2

2 (z + z−1)

=
ai

π

∮

C

z−ndz

(1 − a2)z2 − 2z(1 + a2) + (1 − a2)
.

When n ≤ 0, there are two simple poles at

z1 =
1 − a

1 + a
, z2 =

1 + a

1 − a
.

Since z1 is inside C and z2 is not, the residue theorem yields

f̂1(n) =

ai
π(1−a2)2πi

(
1−a
1+a

)−n

1−a
1+a − 1+a

1−a

=
1

2

(
1 − a

1 + a

)−n

.

Since f1 is real-valued, f̂1(n) = f̂1(−n). Thus,

f̂1(n) =
1

2

(
1 − a

1 + a

)|n|

n ∈ Z.

For N even, the error of the trapezoidal rule is
∫ 2π

0
f1(θ)dθ − TN (f1) = 2π

∑

k∈Z

k 6=0

1

2

(
1 − a

1 + a

)|kN |

= 2π
∞∑

k=1

((
a− 1

a+ 1

)N
)k

= 2π

(
a−1
a+1

)N

1 −
(

a−1
a+1

)N

= 2π
(a− 1)N

(a+ 1)N − (a− 1)N
.

To guarantee the trapezoidal rule will have error ǫ, we take

N =
log
(

ǫ
2π+ǫ

)

log(a− 1) − log(a+ 1)
.
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N Computed Error Predicted Error

2 7.85 × 10−1 7.85 × 10−1

4 7.85 × 10−2 7.85 × 10−2

8 9.58 × 10−4 9.58 × 10−4

16 1.46 × 10−7 1.46 × 10−7

32 3.55 × 10−15 3.39 × 10−15

64 8.88 × 10−16 1.83 × 10−30

128 2.22 × 10−15 5.33 × 10−61

Table 3.1: The computed error and the infinite sum (3.2) applied to f1(θ) when a = 2. From
equation (3.2), the errors agree until machine precision when the error of the trapezoidal
rule plateaus.

The error of the trapezoidal rule applied to f1 is summarized in Table 3.1. For comparison,

we compute the infinite sum (3.2). The two values agree until machine precision when the

computed error plateaus. We expect this to happen when

N =
log
(

10−16

2π+10−16

)

− log(3)

≈ 35.2.
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Figure 3.2: The function f2(θ) (top) and the absolute value of its Fourier coefficients (bot-
tom) when a = 2. The plot suggests |f̂2(n)| ∼ n−3.

We now analyze the error of the trapezoidal rule applied to f2. From the bottom

plot of Figure 3.2, we see that |f̂2(n)| = O(n−3). This rate of decay suggests that f2 ∈
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N Computed Error Predicted Error

2 6.71 × 10−1 1.49 × 10−2

4 1.28 × 10−1 8.64 × 10−2

8 1.44 × 10−2 1.81 × 10−2

16 1.81 × 10−3 2.00 × 10−3

32 2.30 × 10−4 2.52 × 10−4

64 2.88 × 10−5 3.19 × 10−5

128 3.60 × 10−6 4.01 × 10−6

Table 3.2: The computed error and a predicted error of the trapezoidal rule applied to f2(θ)
when a = 2. The error reduces by a factor of 8 when N is doubled. We list the N th Fourier
coefficient which scales with the computed error.

C1[0, 2π)\C2[0, 2π). This is the case since

lim
θ→0

f2(θ) =
1

4
,

lim
θ→0

f ′2(θ) = 0,

lim
θ→0

f ′′2 (θ) = −∞.

To apply the trapezoidal rule to f2, we would like an exact value for its integral. However,

we do not have this value, so, we use an approximate with 30 digits accuracy. The results

are summarized in Table 3.2. We do not have an expression for the spectrum of f2, so we

can not compute the error exactly. However, we can use the N th Fourier coefficient of f2 as

a gauge for the error of the trapezoidal rule.

Summarizing, the trapezoidal rule applied to (3.1) converges at the same rate as a Fourier

method. Since f1 ∈ C∞[0, 2π), the trapezoidal rule converges spectrally, that is, faster than

any power of N−1. However, the function f2 ∈ C1[0, 2π) and so the trapezoidal rule is

only a third-order method. This motivates using high-order, specialized quadrature rules

adapted for the nature of the singularity.

3.2 High-Order Quadrature Rules

The trapezoidal rule applied to f2 demonstrates the need for high-order quadrature rules to

compute integrals involving K0. Because of (2.19), we implement quadrature rules designed

for functions with a logarithmic singularity introduced by Bradley Alpert [2]. Suppose we
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N Trapezoidal p = 4 p = 8 p = 12 p = 16

2 6.71 × 10−1 1.44 × 10−2 2.71 × 10−5 3.65 × 10−7 5.27 × 10−10

4 1.28 × 10−1 1.75 × 10−3 3.18 × 10−6 4.15 × 10−8 6.00 × 10−11

8 1.44 × 10−2 3.51 × 10−5 3.77 × 10−8 5.28 × 10−10 1.24 × 10−12

16 1.81 × 10−3 5.49 × 10−6 7.53 × 10−10 8.07 × 10−13 1.24 × 10−12

32 2.30 × 10−4 5.78 × 10−7 5.45 × 10−12 9.45 × 10−13 4.18 × 10−13

64 2.88 × 10−5 3.59 × 10−8 3.82 × 10−13 8.41 × 10−13 1.62 × 10−13

128 3.60 × 10−6 1.74 × 10−9 2.90 × 10−13 2.30 × 10−13 2.16 × 10−13

Table 3.3: The quadrature error for integrating f2. The order of convergence is O(hp log h).
For comparison, we rewrite the error of the trapezoidal rule. As desired, Alpert’s quadrature
rules reduce the error.

wish to compute

∫ 2π

0
f(θ)dθ,

where f(θ) is periodic with a logarithmic singularity at θ = 0. Alpert’s quadrature rules are

∫ 2π

0
f(θ) ≈ h

ℓ∑

i=1

uif(vih) +

n−1∑

i=0

f(ah+ ih) + h

ℓ∑

i=1

uif(2π − vih). (3.4)

The error is O(hp log h), a is a positive integer, the grid spacing is h = (n+ 2a− 1)−1, and

the quadrature weights ui and nodes vi, i = 1, . . . , ℓ all depend on the choice of p.

The nodes and weights developed in [2] are found by numerically solving a nonlinear

system of equations. Alpert establishes both uniqueness and existence of such solutions. He

uses an iterative method outlined in [39] to solve the system of equations in quadratic time.

Rules have been published for p ranging from 2 to 16.

We test the quadrature rules on f2, varying both n and p. From Table 3.3, we see that

high accuracy is easy to achieve if p is sufficiently large. For comparison, we also rewrite

the computed error from the trapezoidal rule (Table 3.2). As desired, we see a significant

increase in the accuracy and are able to establish 13 digits accuracy.

We now discretize (3.1) using Alpert’s quadrature rules. For k = 0, . . . ,M and j =



CHAPTER 3. NUMERICAL SOLUTIONS OF THE INTEGRAL EQUATIONS 34

1, . . . , N ,

f(rk(θj)) = λσ(rk(θj))

+
1

2πα2

M∑

m=0
m6=k

N∑

n=1

K(rm(θn), rk(θj))σ(rm(θn))|r′m(θn)|∆θ

+
1

2πα2

N+j−a∑

n=j+a

K(rk(θn), rk(θj))σ(rk(θn))|r′k(θn)|∆θ

+
1

2πα2

ℓ∑

n=1

unK(rk(θj + vn∆θ), rk(θj))σ(rk(θj + vn∆θ))|r′k(θj + vn∆θ)|∆θ

+
1

2πα2

ℓ∑

n=1

unK(rk(θj − vn∆θ), rk(θj))σ(rk(θj − vn∆θ))|r′k(θj − vn∆θ)|∆θ. (3.5)

The first summation is the trapezoidal rule applied to points not on Γk. The second sum-

mation is the second term of (3.4) applied to Γk; it is the trapezoidal rule outside of a

window surrounding rk(θj). The final two summations are the first and third terms of (3.4).

In the second summation of (3.5), we invoke periodicity of all functions defined on Γk, or

equivalently, j + N = j. In the final two summations of (3.5), we are required to know

values of σ intermediate to the nodal values. In these cases, we use Fourier interpolation.

Fix k and n and suppose we require σ(rk(θj + vn∆θ)) in the third summation of (3.5).

Suppose we know σ(rk(θj)) for all j = 1, . . . , N . Since σ restricted to Γk is a periodic

function, we can compute its Fourier series

σ(rk(θ)) ≈
N/2−1∑

m=−N/2

σ̂k(m)eimθ,

where

σ̂k(m) =
1

2π

N∑

j=1

σ(rk(θj))e
−imθ, m = −N/2, . . . , N/2 − 1.

Then,

σ(rk(θj + vn∆θ)) ≈
N/2−1∑

m=−N/2

σ̂k(m)eim(θj+vn∆θ)

=

N/2−1∑

m=−N/2

σ̂k(m)eimvn∆θeimθj ,
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which is also a Fourier series with Fourier coefficients σ̂k(m)eimvn∆θ. Using an inverse Fourier

transform, σ(rk(θj +vn∆θ)) is computed for all j = 1, . . . , N . To compute σ(rk(θj ±vn∆θ))

for all n = 1, . . . , N , m = 0, . . . ,M , and k = 1, . . . , ℓ requires M + 1 forward Fourier

transforms and 2ℓ(M + 1) inverse Fourier transforms. All the Fourier transforms are of size

N .

Using Fourier interpolation, we have not formulated the problem as a linear system,

but rather have made it suitable for an iterative solver. If constructing the linear system

is desired, as an alternative to Fourier interpolation, we could use Lagrange interpolation

as is suggested in [2]. This is straightforward to implement and results in a linear system

resembling (3.3). However, it is very unstable when a high-order interpolant is used or the

geometry becomes complex.

We have discretized the integral equation (3.1) with either (3.3) or (3.5). Now we must

solve the linear system, which in both cases is dense. Gaussian elimination would require

O(N3(M +1)3) operations which is far too slow for problems we are considering. We resort

to the iterative solver generalized minimal residual method (GMRES) [45]. The bulk of the

work at each GMRES iteration is applying the matrix to a vector. As this matrix is dense, a

direct matrix-vector multiplication would require O(N2(M + 1)2) operations. While this is

an improvement over Gaussian elimination, the matrix-vector multiplication can be reduced

to O(N(M + 1)) or O(N(M + 1) log(N(M + 1))) using the fast multipole method (FMM)

discussed in Chapter 5. As a note, the matrix is never actually formed. Rather, we construct

a function that takes N(M + 1) values of σ and returns the right-hand-side of either (3.3)

or (3.5).

The condition number of the linear system is important to determining the performance

of GMRES, so, we consider the condition number of the linear systems (3.3) and (3.5).

Since the integral operators are compact, the eigenvalues cluster at the origin. Thus, dis-

cretizations of (3.1) cluster at λ 6= 0. As N increases, the largest and smallest eigenvalues

in absolute value converge; hence, the spectrum is bounded. This guarantees a bound in-

dependent of N on the condition number of (3.3) and (3.5) (see Figure 3.3). With this

property, we expect that the number of required GMRES steps is bounded independent of

N . The numerical examples in Section 3.4 demonstrate this property.
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Figure 3.3: The eigenvalues and condition number of a 2-ply-connected exterior domain.
The values of N reading left to right then top to bottom are 16, 32, 64, and 128. The
eigenvalues cluster at λ = 1/2α2 (α = 1 in this example) and the condition number remains
bounded.
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3.3 Near-Singular Integration

Once σ(rk(θj)) is computed, we need to accurately evaluate the single-layer or double-layer

potential at points x ∈ Ω. These values are required in Rothe’s method since the volume

integral that is computed at each time step requires values of the solution from previous time

steps (2.5). In this section, we work with the double layer potential (2.29) in a bounded

domain; the single layer potential (2.24) works similarly. Since x /∈ Γ, the kernel of the

double layer potential is smooth; thus, the trapezoidal rule has spectral accuracy. However,

for fixed N , as x approaches Γ, the error in the trapezoidal rule increases. In fact, the

trapezoidal rule does not converge uniformly in Ω.

Figure 3.4 shows plots of

ui(θ) =
1

2π

K1 (|(cos(θ), sin(θ)) − xi|)
|(cos(θ), sin(θ)) − xi|

(1 − (cos(θ), sin(θ)) · xi) i = 1, . . . , 4.

These functions are integrated when evaluating the double layer potential of the unit circle.

The points x1, x2, x3, and x4 are distance 0.2, 0.15, 0.1, and 0.05 from (−1, 0). As x

approaches Γ, we see a boundary layer forming at θ = π. Moreover, the Fourier coefficients

take longer to decay below a fixed threshold. To achieve machine precision, N = 200 is

sufficient for x1, while N ≈ 1000 is required for x4.

Near-singular integration is a difficult problem and has been considered in the past by

Helsing and Ojala [32] and references therein, Cheng and Greengard [15], Biros et. al. [50],

and Beale and Lai [7]. The work in [15, 32] is applied to integral equations arising from

Laplace’s equation. It is not immediately clear how to extend this work to other kernels.

The work in [7] performs a smoothing of the singularity and then adds corrections. These

corrections are found by doing a careful asymptotic analysis. While this could be done for

the modified Helmholtz equation, numerical results in [7] indicate that no more than six

digits of accuracy are ever achieved.

To bound the error in Ω uniformly, we adopt the strategy from [50]. Let σk : Γk → R
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Figure 3.4: The left plots are the double layer potentials for four values of x approaching
Γ. The distances in decreasing order are 0.2, 0.15, 0.1, 0.05. The right plot is the absolute
value of the spectrums of u1, u2, u3, and u4. The black plot corresponds to distance 0.2,
the red to distance 0.15, the green to distance 0.1, and the blue to distance 0.05.

be the restriction of σ to Γk, k = 0, . . . ,M . The double layer potential is decomposed as

u(x) =
1

2πα2

∫

Γ

∂

∂νy
K0

( |y − x|
α

)
σ(y)dsy

=
1

2πα2

M∑

k=0

∫

Γk

∂

∂νy
K0

( |y − x|
α

)
σk(y)dsy

=
M∑

k=0

uk(x),

where

uk(x) =
1

2πα2

∫

Γk

∂

∂νy
K0

( |y − x|
α

)
σk(y)dsy.

Let hk be the maximum distance in arclength between two successive points on Γk and

assume hk < 1. Define the three regions

Ω2
k := {x ∈ Ω | dist(x,Γk) ∈ (

√
hk,∞)},

Ω1
k := {x ∈ Ω | dist(x,Γk) ∈ (hk,

√
hk]},

Ω0
k := {x ∈ Ω | dist(x,Γk) ∈ (0, hk]},

where the distance function is

dist(x,Γk) = inf
y∈Γk

|y − x|.
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In this thesis, we do not find the distance from x to Γk, but rather from x to the discretization

of Γk. The three regions are called the far, intermediate, and near regions respectively

(Figure 3.5).

If x ∈ Ω2
k and N is sufficiently large, the trapezoidal rule with N points achieves high

accuracy [50]. Thus, we use the approximation

uk(x) ≈ 1

2πα2

N∑

j=1

∂

∂νyj

K0

( |yj − x|
α

)
σk(yj)|∆syj |.

If x ∈ Ω1
k, we apply the trapezoidal rule with N3/2 points

uk(x) ≈ 1

2πα2

N3/2∑

j=1

∂

∂νỹj

K0

( |ỹj − x|
α

)
σk(ỹj)|∆sỹj |.

The denser sampling ensures that the approximation order is maintained [50]. To compute

σk at N3/2 points, we compute the Fourier series of σk, pad it with N3/2 − N zeros, and

compute the inverse Fourier transform.
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Figure 3.5: The near (white), intermediate (light grey), and far (dark grey) regions. x is
a typical point in Ω0

k and x0 is its closest point on Γk. The interpolation points (3.6) are
on the straight line. In the left plot, the interpolation points can be chosen in Ω1

k ∪ Ω2
k

since (x − x0) · νx0
is far from 0. In the middle plot, (x − x0) · νx0

is close to 0 resulting
in interpolation points in Ω0

k. In the right plot the interpolation points are taken in the
direction νx

0
. Then, the interpolation points are in Ω1

k ∪ Ω2
k. However, the interpolation

becomes an extrapolation.

The problematic region is the near region Ω0
k. As mentioned earlier, regardless of how

large N is chosen, the error in the trapezoidal rule can be made arbitrarily large by choosing

x ∈ Ω0
k sufficiently close to Γ. To avoid evaluating layer-potentials at points x ∈ Ω0

k, an

interpolant is used. We find the discretization point x0 ∈ Γk nearest to x, and define the
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interpolation points in the direction x − x0

zj = x0 + j
x− x0

|x− x0|
βhk, j = 0, . . . , p. (3.6)

β is chosen so that

β
x0 − x

|x0 − x| · νx0
> 1.

Then, z0 = x0 so that

uk(z0) = lim
x→z0
x∈Ω

uk(x)

=
1

2α2
σk(x0) +

1

2πα2

∫

Γk

∂

∂νy
K0

( |y − x0|
α

)
σk(y)dsy.

The jump comes from (2.31), and the integral is computed using Alpert’s quadrature rules.

Also, with the choice for β, the interpolation nodes zj with j 6= 0 satisfy

dist(zj ,Γk) > hk.

Depending on the location of zj , we use the trapezoidal rule with either N or N3/2 points

to approximate uk(zj). Thus, if N is sufficiently large, we can approximate uk(zj) to any

accuracy desired.

In the center plot of Figure 3.5, x − x0 and νx
0

are close to orthogonal. The result is

the interpolation points (3.6) lie in Ω0
k. This problem is alleviated by setting a threshold on

the angle between x−x0 and νx0
. If the angle is too close to 0, we interpolate at the points

zj = x− (j + 1)νx0
hk, j = 0, . . . , p,

which are illustrated in the right plot of Figure 3.5. Notice that in this case, x lies beyond

all the interpolation points. Thus, we are in fact extrapolating which is an ill-conditioned

problem. This can lead to larger than desired errors as is seen in the numerical examples.

Possible solutions to this problem are discussed in the Interior Dirichlet example. Once

we have chosen the interpolation (or extrapolation) points zj and have evaluated uk(zj), a

Lagrange interpolant is used to approximate uk(x).

In the outlined method, for each x ∈ Ω, we have to decide if it is in the far, intermediate,

or near region. Done directly, the cost would be N(M + 1) operations for each evaluation
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point in Ω. As an alternative, in [50], the authors use a Newton-type nonlinear iteration to

maximize

x0 − x

|x0 − x| · νx0
.

They report that in most cases, it converges to a satisfactory result in 3 or 4 iterations.

However, this requires a closed-form representation of Γk. Also, if the initial guess is poor,

the method may converge to the farthest point from x.

To resolve these issues, we find the closest point using a discrete method. Suppose

Γk ⊂ [−1/2, 1/2]2 . We recursively divide [−1/2, 1/2]2 into 4 equal parts ⌊− log2

√
hk⌋ times

where ⌊·⌋ is the floor function. This guarantees each undivided box will be the smallest box

whose diameter is greater than
√
hk. To determine if a point x is in Ω2

k, we first find the

undivided box containing it. Then, if its neighboring boxes contain no points of Γk, then

x ∈ Ω2
k. Otherwise, the distance is computed by looking at all points in neighboring boxes.

Then, it is classified as either being far, intermediate, or near. This method is illustrated in

Figure 3.6.

Ωk

x

Figure 3.6: If a point lies in the light grey region it is in Ω2
k. If it is in the white region, such

as the point labeled x, then a search is done in its neighboring boxes (dark grey region) for
the closest point. Once found, the distance is computed exactly. A line of length

√
hk is

drawn for comparison with the size of undivided boxes. Notice that
√
hk is smaller than the

diameter of an undivided box, but if each box was refined once more, this would no longer
be the case.

As a final option to sort points in each of the three regions, if Ωk is an ellipse, the closest

point can be found by solving a polynomial equation. Finding the closest point on an ellipse

to a fixed point in space can be recast as the solution of a fourth-order polynomial. Since
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the roots of a quartic can be determined exactly, we can bin each point immediately with

no iterations.

3.4 Numerical Examples

The algorithms described in this section have been implemented in Fortran. The tolerance

of GMRES is set to 10−11. We demonstrate the method with four examples.

3.4.1 Interior Dirichlet

We first consider solving (2.21) with α = 0.1 in a bounded, circular domain with 10 interior

elliptic contours as depicted in Figure 3.7. We generate the Dirichlet boundary conditions

from

u(x) =
10∑

k=1

K0

( |x− xk|
α

)
, (3.7)

where xk is a point inside Γk. We compute the maximum error in the three regions

Ω0 =
10⋃

k=0

Ω0
k, Ω1 =

10⋃

k=0

Ω1
k\Ω0, Ω2 =

10⋃

k=0

Ω2
k\(Ω0 ∪ Ω1).

For the near region Ω0, 15 interpolation points are used. The results are summarized in

Tables 3.4–3.8.
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Figure 3.7: The solution of the interior Dirichlet 10-ply domain problem.

We draw the following conclusions.
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• The required number of GMRES steps is independent of N , as predicted, but is also

independent of the quadrature rule.

• For smaller values of N , the accuracy in Ω1 and Ω0 is poor. This is most likely

the result of a significant error in the density function. Since the density function is

multiplied by a kernel which takes on its smallest values in Ω2, this error is not as

prevalent in Ω2.

• The error in Ω0 is at times larger than the error in Ω1 ∪ Ω2. This indicates an

interpolation error. A first attempt to reduce the error would be to use Chebyshev

interpolation points. However, these points cluster near the end points and it would

be difficult to guarantee that they remain outside of Ω0
k. Another attempt would be to

use different interpolating functions. Due to the nature of the problems being solved,

perhaps the interpolating functions

Kn

( |x − xk|
α

)
, n ≥ 0,

where xk are points chosen inside Ωk would reduce the interpolation error.

To demonstrate the need for the three different regions, Table 3.7 is recalculated with N

points, rather than N3/2, used in Ω1. Table 3.9 indicates a significant loss of accuracy.

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 8.00 × 10−6 5.56 × 10−3 2.84 × 10−3

1408 45 4.19 × 10−7 1.31 × 10−4 1.31 × 10−4

2816 45 5.43 × 10−8 8.00 × 10−8 1.06 × 10−6

5632 45 7.22 × 10−9 1.10 × 10−8 9.31 × 10−8

Table 3.4: The maximum error in the three different regions of Ω. The trapezoidal rule is
used to find the density function.

3.4.2 Exterior Dirichlet

We demonstrate the versatility of the method by considering a complex unbounded domain.

The domain is illustrated in Figure 3.8. The geometry is constructed by placing points in the

desired locations, computing the Fourier series of this representation, and then truncating
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Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 5.61 × 10−6 5.53 × 10−3 2.84 × 10−3

1408 45 1.06 × 10−6 1.31 × 10−4 1.31 × 10−4

2816 45 1.65 × 10−7 1.13 × 10−6 1.88 × 10−6

5632 45 2.83 × 10−8 2.69 × 10−7 1.86 × 10−8

Table 3.5: The maximum error in the three different regions of Ω. The accuracy of the
quadrature rule is O(h2 log h).

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 5.21 × 10−6 5.55 × 10−3 2.85 × 10−3

1408 45 2.85 × 10−8 1.31 × 10−4 1.31 × 10−4

2816 45 1.50 × 10−10 3.52 × 10−7 1.01 × 10−6

5632 45 5.16 × 10−12 4.34 × 10−11 7.84 × 10−11

Table 3.6: The maximum error in the three different regions of Ω. The accuracy of the
quadrature rule is O(h4 log h).

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 5.21 × 10−6 5.55 × 10−3 2.85 × 10−3

1408 45 2.85 × 10−8 1.32 × 10−4 1.32 × 10−4

2816 45 1.44 × 10−10 3.76 × 10−9 1.01 × 10−6

5632 45 1.98 × 10−11 1.29 × 10−10 1.38 × 10−10

Table 3.7: The maximum error in the three different regions of Ω. The accuracy of the
quadrature rule is O(h8 log h).

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 5.21 × 10−6 5.55 × 10−3 2.85 × 10−3

1408 45 2.85 × 10−8 1.31 × 10−4 1.31 × 10−4

2816 45 1.26 × 10−10 3.86 × 10−9 1.01 × 10−6

5632 45 1.39 × 10−10 9.96 × 10−10 9.30 × 10−10

Table 3.8: The maximum error in the three different regions of Ω. The accuracy of the
quadrature rule is O(h16 log h).
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Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

704 45 5.21 × 10−6 2.75 × 10−1 4.56 × 10−1

1408 45 2.85 × 10−8 4.32 × 10−2 2.94 × 10−1

2816 45 1.44 × 10−10 5.14 × 10−3 1.21 × 10−1

5632 45 1.98 × 10−11 9.38 × 10−4 1.16 × 10−1

Table 3.9: The maximum error in the three different regions of Ω. Only N points were used
in Ω1. The accuracy of the quadrature rule is O(h8 log h).

the Fourier series. In this example, modes above 100 are set to zero. There are 1812 points

on the truck and 2928 points on the man for a total of 4740 points.

 

 

Figure 3.8: The exterior domain consisting of a truck and a man. The blue boxes are
magnified in the middle plots, and the red boxes are magnified in the bottom plots.

The modified Helmholtz equation is solved with α = 1. The boundary conditions are

u = 1 on the truck and u = −1 on the man. A total of 44 GMRES steps were required to

achieve the desired accuracy. The near-singular integration strategy is not used because of

fine details that are difficult to resolve such as in the neck of the man. This results in some

sporadic errors near the boundaries. Thus, we threshold the solution by imposing u(x) = 1

if x is in the near region of the truck and u(x) = −1 if x is in the near region of the man.

Surface and contour plots are in Figure 3.9.

3.4.3 Exterior Neumann

We consider an exterior Neumann problem whose boundary conditions are derived from (3.7).

The geometry is the same as Figure 3.7 minus the outer boundary. Based on results from
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Figure 3.9: The solution of the modified Helmholtz equation in an exterior domain. The
left plots have domain [−1/2, 1/2]2 and the right plots have domain [−1, 1]2. The right plots
show that the solution is decaying to zero.



CHAPTER 3. NUMERICAL SOLUTIONS OF THE INTEGRAL EQUATIONS 47

Tables 3.4–3.8, we select the O(h8 log h) quadrature rule, and we examine the performance

of the method for different values of the parameter α.

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

640 23 1.10 × 10−4 1.73 × 10−4 1.85 × 10−2

1280 23 1.47 × 10−9 2.31 × 10−8 1.32 × 10−3

2560 23 1.56 × 10−11 2.04 × 10−11 3.15 × 10−6

5120 23 2.08 × 10−11 2.55 × 10−11 3.91 × 10−10

Table 3.10: The maximum error in the three different regions of Ω with α = 10.

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

640 23 6.18 × 10−5 1.24 × 10−4 1.85 × 10−2

1280 23 9.37 × 10−10 2.37 × 10−8 1.32 × 10−3

2560 23 1.46 × 10−11 2.07 × 10−11 3.15 × 10−6

5120 23 1.69 × 10−11 2.12 × 10−11 3.97 × 10−10

Table 3.11: The maximum error in the three different regions of Ω with α = 1.

Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

640 25 1.62 × 10−5 7.55 × 10−5 1.85 × 10−2

1280 25 3.43 × 10−10 2.43 × 10−8 1.32 × 10−3

2560 25 1.90 × 10−11 2.20 × 10−11 3.15 × 10−6

5120 25 1.48 × 10−11 2.32 × 10−11 4.07 × 10−10

Table 3.12: The maximum error in the three different regions of Ω with α = 0.1.

For the near region Ω0, 10 interpolation points are used. The results are summarized

in Tables 3.10–3.13. We see similar behavior as observed in the interior Dirichlet example.

In addition, the number of required GMRES steps appears relatively independent of α for

α ≥ 0.1. This behavior is partially explained by the following argument. As α increases,

the equation we are solving approaches Laplace’s equation. We know that the boundary

integral equation for the exterior Neumann Laplace’s equation has a unique solution [18, 24].

Thus, we should expect the integral equation for the exterior Neumann modified Helmholtz

equation to remain well-conditioned as α increases. This in turn bounds the number of
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Total Points GMRES Iterations Ω2 Error Ω1 Error Ω0 Error

640 15 7.23 × 10−9 1.51 × 10−5 2.18 × 10−2

1280 15 1.25 × 10−12 2.40 × 10−8 1.46 × 10−3

2560 15 3.66 × 10−14 2.17 × 10−12 3.41 × 10−6

5120 15 1.38 × 10−13 2.18 × 10−12 4.23 × 10−10

Table 3.13: The maximum error in the three different regions of Ω with α = 0.01.

required GMRES steps. However, the boundary integral equation for Laplace’s equation

with Dirichlet boundary conditions has non-trivial solutions. Therefore, we expect the

number of GMRES steps to increase for larger values of α. We expect the same behavior

for the bounded Neumann problem.

3.4.4 A Larger-Scale Problem

We now consider a more complex bounded domain with 100 elliptic contours of varying size

and alignment, and α = 0.1. On each contour, we prescribe a constant Dirichlet boundary

condition selected randomly from (−1, 1). Each contour is discretized with 512 points,

resulting in a linear system with 51,712 unknowns. A contour plot and surface plot are in

Figure 3.10. If an integral equation method were not used, the modified Helmholtz equation

would be difficult or impossible to solve in this geometry with such high accuracy.
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Figure 3.10: The solution to the modified Helmholtz equation with α = 0.1. The quadrature
rule has accuracy O(h8 log h). On each Γk, a constant boundary condition is chosen at
random in (−1, 1). GMRES required 89 iterations to achieve 11 digits accuracy.



Chapter 4

The Forced Problem

Our strategy for solving (2.6) and (2.7) requires a solution of the forced problem (2.20),

which we rewrite here,

(1 − α2∆)uP = g, x ∈ Ω. (4.1)

Boundary conditions are not specified, so solutions are not unique. In this chapter, we use

volume potentials to form a solution of (4.1).

Anita Mayo [41] has developed methods for efficiently evaluating volume potentials for

the Laplace and biharmonic equations. These approaches are based on a finite difference

method with locally corrected stencils to account for jumps across interfaces. The methods

in [41] are second-order, but have been extended to fourth-order in [43, 42]. However, we

avoid using stencil-based methods as they often have stability issues [10]. Alternatively, an

unstructured mesh could be used to calculate the volume potential. However, we wish to

avoid the difficulties with mesh generation. Instead, we compute the volume potential with

an adaptive quadtree structure.

Section 4.1 discusses methods developed in [17] for computing a volume integral that

solves (4.1). We also discuss strategies for evaluating this volume integral on Γ so that the

correct boundary conditions in (2.21) are formed. The volume integral requires values for

the forcing term in the unit box, thus, the forcing term must be extended from Ω to a box

containing Ω. Three possible methods are compared in Section 4.2. In Section 4.3, several

numerical examples show the advantages and limitations of each extension.

49
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4.1 Volume Integral

From Theorem 2.2, a solution of (4.1) is

uP (x) =
1

2πα2

∫

Ω
K0

( |y − x|
α

)
g(y)dy, x ∈ Ω. (4.2)

In [17], Cheng et. al. present a fourth-order method to compute (4.2) when Ω is the unit

square D = [−1/2, 1/2]2. We extend this work to more general domains Ω by coupling the

volume integral solver in [17] with the homogeneous solver in [37]. This work can also be

extended to higher order methods. In [20], the authors develop an eighth-order method for

Poisson’s equation.

Suppose Ω is a bounded domain. We assume that Ω ⊂ D which can always be achieved

by manipulating α. Given a forcing term g : Ω → R, we construct an extension g̃ : D → R.

That is, g̃ satisfies g̃(x) = g(x) for all x ∈ Ω. Define ũP : D → R,

ũP (x) =
1

2πα2

∫

D
K0

( |y − x|
α

)
g̃(y)dy, x ∈ D. (4.3)

Then, (1 − α2∆)ũP (x) = g̃(x) for all x ∈ D; in particular, (1 − α2∆)ũP (x) = g(x) for all

x ∈ Ω. Hence, a solution of (4.1) is

uP (x) = ũP (x), x ∈ Ω,

the restriction of ũP to Ω. In the next section, we discuss possible methods to construct g̃.

First, we outline the method described in [17].

An adaptive quadtree structure is used to superimpose a hierarchy of refinement on the

computational domain D. The unit square D is considered to be grid level 0. Grid level

l+1 is obtained recursively by subdividing each square (or node) s at level l into four equal

parts; these are called the children of s. Adaptivity is achieved by allowing different levels

of refinement throughout the tree. Precomputation is possible if a standard restriction is

placed on the quadtree: two nodes that share a boundary point must be no more than one

refinement level apart. We denote the childless nodes in the quadtree as Di, i = 1, . . . , P ,

where P is the total number of such nodes.

In each box s, an interpolant for g̃ is constructed. The interpolant belongs to

span{1, x, y, x2, xy, y2, x3, x2y, xy2, y3},
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and is the best approximation in the least-squares sense on a cell-centered 4 × 4 grid in s.

Then, g̃ and the interpolant are evaluated on a cell-centered 8 × 8 grid in s. If the l2 error

is larger than some preset tolerance τ , then s is subdivided.

For each childless box Di, we write the polynomial interpolant as

g̃(x) ≈
10∑

j=1

cijpj(x − xi), x ∈ Di,

where xi is the center of Di. An approximation of (4.3) is

ũP (x) =
P∑

i=1

1

2πα2

∫

Di

K0

( |y − x|
α

)
g̃(y)dy

≈
P∑

i=1

1

2πα2

∫

Di

K0

( |y − x|
α

) 10∑

j=1

cijpj(y − xi)dy

=
P∑

i=1

1

2πα2

10∑

j=1

cij

∫

Di

K0

( |y − x|
α

)
pj(y − xi)dy, x ∈ D. (4.4)

To evaluate (4.4) at all ND = 16 × P points directly requires O(N2
D) operations. This is

reduced to O(ND) operations using the fast multiople method (FMM) [17].

Once (4.4) has been computed at all ND points, we interpolate onto Γ to formulate the

correct boundary condition f in (2.21b) or (2.22b). To avoid computing derivatives of uP ,

we focus on the Dirichlet problem (2.6). Since we have computed ũP on the cell-centered

4 × 4 grid of each Di, we use the third-order polynomials that we have already introduced

to construct an interpolant. Let x0 ∈ Γ and let Di be the childless box with x0 ∈ Di. Given

the 16 values of uP in box Di, we construct the polynomial approximation

uP (x) ≈
10∑

j=1

di
jpj(x − xi), x ∈ Di,

and then evaluate

uP (x0) ≈
10∑

j=1

di
jpj(x0 − xi).

Alternatively, we could use (4.4) and evaluate

uP (x0) ≈
P∑

i=1

1

2πα2

10∑

j=1

cij

∫

Di

K0

( |y − x0|
α

)
pj(y − xi)dy.
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This would require manipulating the FMM used to evaluate (4.4) at the ND cell-centered

points. However, if solving a Neumann problem, the normal derivative should be approxi-

mated with

∂

∂νx0

uP (x0) ≈
P∑

i=1

1

2πα2

10∑

j=1

cij

∫

Di

∂

∂νx0

K0

( |y − x0|
α

)
pj(y − xi)dy.

This approach is not adopted in [17]; rather, they used finite differences.

4.2 Constructing Extensions

There are several options for extending g to D. We outline three of them. The first extension

is the most naive

g̃(x) =

{
g(x), x ∈ Ω,

0, x ∈ D\Ω.

Since g̃ is only piecewise continuous, we expect ũP to be continuously differentiable. Thus,

when we interpolate ũP , the order of the method is reduced to two. Also, since a box is

refined if it can not be approximated well by a third-order polynomial, the quadtree will

excessively refine near Γ and consequently will slow down the evaluation. For example,

in [20], ∆u = g̃ was solved with g̃ = 1 inside the unit disk and g̃ = 0 outside. The total

number of childless boxes was O(105) which is far too large for this simple function g̃.

In [36], the authors consider the class of problems where the forcing term g on each Γk

is constant. Let Ωk, k = 1, . . . ,M be the region bounded by Γk, and Ω0 = D\Ω1 ∪ · · ·∪ΩM .

The second extension is

g̃(x) =





g(x), x ∈ Ω,

Ck, x ∈ Ωk,

C0, x ∈ Ω0,

where g(x) = Ck for x ∈ Γk. The disadvantage of this method is the restriction on g.

However, with this restriction, the authors demonstrate that using integral equations and

Rothe’s method to solve (1.1) is promising. Since g̃ is continuous, this extension results

in a third-order accurate solution. There will also be refinement near Γ because of the

discontinuity in the derivative of g̃. However, the refinement will not be as excessive as in

the first extension.
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As a final option to extend g, we focus on reducing excessive refinement of the quadtree

near Γ and make no attempt to construct a smooth function g̃. When constructing the

quadtree, a box s is either entirely inside Ω, entirely outside Ω, or intersects Ω and Ωc. We

start by defining

g̃(x) =

{
g(x), x ∈ Ω,

0, x ∈ Di with Di ∩ Ω = ∅.

Now consider a box s whose 16 points {xj}16
j=1 lie on both sides of Γ. For each of these

points, we define its neighbors to be the set of points inside s to the north, south, east,

and west, as well as northeast, northwest, southeast, and southwest. A point has at most

eight neighbors. Let Λ ⊂ {1, . . . , 16} be the indices of points where g̃ is undefined. For each

j ∈ Λ, we count the total number of neighbors of xj where g̃ is defined. Beginning with

the point which has the most known neighbor values, we take an average of the values and

assign it to g̃(xj). We repeat this process until g̃ is known at all 16 points inside s. To

assign more weight to closer points, we use the inverse distance weighted average

g̃(xj) =
∑

k∈Λ

wkg̃(xk),

where

wk =
h−2

k∑

i∈Λ

h−2
i

,

and hk = 1 if xk is to the north, south, east or west of xj , and hj =
√

2 if xk is to

the northeast, northwest, southeast, or southwest of xj. This procedure is illustrated in

Figure 4.1.

Once g̃ has values assigned at all 16 points, a fourth-order polynomial is fit in the least-

squares sense to these function values. Then, the error is checked at the intersection of the

cell-centered 8 × 8 grid and Ω. If the error is above the threshold τ , s is subdivided.

We compare these three options for g̃ by computing the size of the quadtree required to

achieve a desired accuracy. The domain Ω is the ball centered at the origin of radius 0.5

and the forcing term is

g(x) = e−|x|2, |x| ≤ 0.5.

The three options are:
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Figure 4.1: The cell-centered 4× 4 grid points and the value of g̃ at some of the grid points.
The points to the right of the red line are unknown at the initial state. Reading left to right
then top to bottom, values are assigned to g̃ at the unknown values.
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• Option 1:

g̃(x) =

{
g(x), x ∈ Ω,

0, x /∈ Ω.

• Option 2:

g̃(x) =

{
g(x), x ∈ Ω,

e−0.52

, x /∈ Ω.

• Option 3

g̃(x) =

{
g(x), x ∈ Ω,

0, x ∈ Di with Di ∩ Ω = ∅,

otherwise, g̃(x) is defined using the averaging strategy.

Table 4.1 lists the size of the quadtree required to achieve the desired accuracy τ (prerefine),

and the size of the quadtree after the restriction on neighboring boxes (postrefine).

Option 1 Option 2 Option 3
τ Prerefine Postrefine Prerefine Postrefine Prerefine Postrefine

10−1 21 21 1 1 5 5
10−2 149 165 5 5 21 21
10−3 405 645 37 37 69 69
10−4 1,189 2,085 117 133 149 165
10−5 4,053 8,101 277 357 309 389
10−6 11,253 24,485 581 901 741 1,157
10−7 36,021 76,517 1,461 2,197 2,149 3,973
10−8 — — 2,885 4,709 4,389 8,773

Table 4.1: The total number of boxes in the quadtrees for each option of g̃. Option 1 is
piecewise continuous with the discontinuity on Γ; option 2 is continuous, but not differen-
tiable, with the loss of differentiability on Γ; option 3 is piecewise continuous, but has some
regularity on each childless box Di.

Figure 4.2 illustrates the quadtree both before and after the tree has the additional

restriction concerning neighboring boxes. Also illustrated is the extension g̃. As expected,

option 1 refines near Γ and g̃ is only piecewise continuous. Using option 2, g̃ is continuous

and the tree is refined less along Γ. For the third option, g̃ is piecewise continuous in D, but
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Figure 4.2: From left to right are option 1, option 2, and option 3. From top to bottom are
the quadtrees before refinement, after refinement, and a plot of the g̃. Boxes are subdivided
if the error is greater than τ = 10−4.
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has some regularity in each childless box Di. The result is a quadtree that is comparable to

option 2.

We redo the previous example with the forcing term g(x, y) = x. Since g is not constant

on Γ, option 2 is omitted. The results are summarized in Table 4.2 and illustrated in

Figure 4.3. Again, option 3 results in a significant reduction of the size of the quadtree.

Option 1 Option 3
τ Prerefine Postrefine Prerefine Postrefine

10−1 21 21 5 5
10−2 85 85 21 21
10−3 245 325 69 69
10−4 885 1,525 149 165
10−5 2,373 4,565 293 389
10−6 7,349 15,221 801 1,405
10−7 22,613 48,993 1,737 3,625
10−8 — — 3,279 7,965

Table 4.2: The total number of boxes in the quadtrees for two options of g̃. Option 1 is
piecewise continuous with the discontinuity on Γ; option 3 is piecewise continuous, but has
some regularity on each childless box Di.

To develop methods that are higher-order, we require additional conditions on g̃. Ideally,

we want g̃ to satisfy three properties:

1. g̃(x) = g(x) for all x ∈ Ω.

2. g̃ ∈ C∞(D).

3. The support of g̃ is contained in D.

The second property can be relaxed since we are using a fourth-order method, but smoother

g̃ allows for higher-order methods to compute (4.2). The third property guarantees that g̃ is

smooth in R
2. This would eliminate a loss of accuracy near the boundary of D. The future

goal is to use mollifiers or partitions of unity to guarantee properties 2 and 3.

4.3 Numerical Examples

We test the methods described in this chapter on a variety of problems. We start by solving

a forced modified Helmholtz equation, then the heat equation both with and without a
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Figure 4.3: From left to right are option 1 and option 3. From top to bottom are the
quadtree before refinement, after refinement, and a plot of the g̃. Boxes are subdivided if
the error is greater than τ = 10−4.



CHAPTER 4. THE FORCED PROBLEM 59

forcing term, and conclude with the nonlinear Allen-Cahn equation. The GMRES tolerance

for the forced problem is set to 10−11.

4.3.1 A Forced Problem

We solve the forced modified Helmholtz equation

u(x) − α2∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where g(x) = |x|4 − 16α2|x|2, and f(x) = |x|4. The exact solution is u(x) = |x|4. The

domain Ω is the annulus B(0, 0.4)\B(0, 0.1), and we choose α = 1. We use N = 28 points

on both Γ0 and Γ1 and N = 212 points are used in the intermediate region Ω1. The tolerance

for constructing the quadtree is set to τ = 10−12. With this small value of τ , we expect the

quadtree to refine to the maximum allowable level except in regions where g̃ is constant.

Since g is constant on Γ0 and Γ1, we take the continuous extension defined by option

2. The results are summarized in Table 4.3 As expected, we see fourth-order accuracy in

Max Level Quadtree Size Ω2 Error Ω1 Error Ω0 Error

2 21 7.76 × 10−4 4.00 × 10−4 1.23 × 10−4

3 85 3.73 × 10−5 1.36 × 10−4 1.39 × 10−5

4 341 1.84 × 10−6 2.01 × 10−5 2.00 × 10−6

5 917 1.74 × 10−7 5.86 × 10−7 4.12 × 10−7

6 3,125 8.40 × 10−9 3.28 × 10−8 9.09 × 10−8

7 11,781 1.31 × 10−9 2.99 × 10−9 1.17 × 10−8

Table 4.3: The maximum level of the quadtree and the size of the quadtree for a forced
modified Helmholtz equation. The maximum errors in the far, intermediate, and near
regions are listed. Option 2 is used to construct g̃.

Ω2. However, the order of convergence in Ω1 is 3.6 and in Ω0 is order 2.6. This is a result

of the discontinuity in the derivative of the forcing term along Γ. A smoother extension g̃

with compact support in D would result in fourth-order accuracy throughout Ω.

We redo this example, but rather than using option 2 to construct the extension g̃, we

use option 3. The results are summarized in Table 4.4. We do see a drop in the accuracy

when comparing to Table 4.3. The order of convergence in Ω2 is 2.0, in Ω1 is 2.2, and in Ω0

is 1.5. The second-order accuracy results from the loss of continuity of g̃ near Γ. However,
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Max Level Quadtree Size Ω2 Error Ω1 Error Ω0 Error

2 21 1.09 × 10−3 4.17 × 10−4 7.19 × 10−5

3 85 1.11 × 10−4 1.97 × 10−4 1.38 × 10−4

4 341 2.96 × 10−6 5.76 × 10−5 4.05 × 10−5

5 917 1.21 × 10−4 1.15 × 10−5 1.45 × 10−5

6 3,125 3.55 × 10−7 1.66 × 10−6 4.84 × 10−6

7 11,781 1.38 × 10−7 6.82 × 10−7 2.30 × 10−6

Table 4.4: The maximum level of the quadtree and the size of the quadtree for a forced
modified Helmholtz equation. The maximum errors in the far, intermediate, and near
regions are listed. Option 3 is used to construct g̃.

the benefit of using option 3 is clear if we set the desired tolerance to τ = 10−4. If we let

g̃ = 0 outside of Ω, that is, use option 1, then the required quadtree has 2517 boxes. If we

use option 2, only 1077 boxes are required.

4.3.2 Forced Heat Equation

In this example, we test the temporal accuracy by solving the forced heat equation

ut − ∆u = g, x ∈ Ω, t > 0, (4.5a)

u = f, x ∈ Γ, t > 0, (4.5b)

u = u0, x ∈ Ω, t = 0, (4.5c)

where Ω = B(0, 0.4)\B(0, 0.1). The forcing term is

g(x) = −400 cos(20|x|) − 20
sin(20|x|)

|x| .

The exact solution is

u(x, t) = e−λ2t[Y0(0.1λ)J0(λ|x|) − J0(0.1λ)Y0(λ|x|)] + cos(20|x|),

where J0 is the zeroth-order Bessel function of the first kind, and Y0 is the zeroth-order

Bessel function of the second kind. We choose λ ≈ 10.244 which makes the time-dependent

term vanish on Γ. Then, the boundary conditions are

f(x) =

{
cos(8), x ∈ Γ0,

cos(2), x ∈ Γ1.
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Since the boundary conditions are constant on Γ0 and Γ1, we use the continuous extension

of g defined earlier as option 2. This helps reduce the spatial error so that the temporal

discretization is the dominating source of error.

We calculate solutions to (4.5) using the first-order IMEX Euler and extrapolated Gear

methods up to t = 0.01. The tolerance for the volume integral is τ = 10−10 and N = 1024

points are used on both Γ0 and Γ1. This spatial resolution is high enough that the spatial

error is negligible in comparison to the temporal error. The maximum error is evaluated at

points that are sufficiently far away from Γ. The results are summarized in Table 4.5. We

∆t Error1 Error2
2.0 × 10−3 1.37 × 10−2 1.66 × 10−3

1.0 × 10−3 7.14 × 10−3 4.77 × 10−4

5.0 × 10−4 3.66 × 10−3 1.25 × 10−4

2.5 × 10−4 1.89 × 10−3 3.22 × 10−5

Table 4.5: Temporal Error using IMEX Euler (Error1) and Extrapolated Gear (Error2); we
achieve first and second order convergence, respectively. The solution at time step dt for
extrapolated Gear was taken to be the exact solution. This eliminates introducing error
caused by initially using a low-order method.

see that we achieve first-order convergence for IMEX Euler and nearly achieve second-order

for extrapolated Gear. The slight reduction in order is due to error near Γ that is propagated

into Ω with each time step. This problem would be amplified if a third- or fourth-order time

integrator were used. This could be resolved by implementing the near-singular integration

strategy for time-dependent problems.

4.3.3 Homogeneous Heat Equation

We consider the homogeneous heat equation

ut − ∆u = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

u(x, t) = 1, x ∈ Γ1, t > 0,

u(x, 0) = 0, x ∈ Ω.

The geometry is an annular region (left plot of Figure 4.4). The right plot of Figure 4.4 is

the solution at time dt = 10−3. Since u is constant for all time on each of the component
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curves, option 2 is used as the extension. The quadtree for the volume integral and contour

plots of the solution are in Figure 4.5.

Figure 4.4: The left plot is the geometry. The right plot shows the solution at the first time
step which is t = 10−3.

4.3.4 Allen-Cahn Equation

Let Ω ⊂ R
2 be a bounded domain with a C2 boundary. A common problem requires

minimizing the energy functional

F (u) =

∫

Ω
f(u)dx.

Using the Euler-Lagrange equation, u must satisfy f ′(u) = 0 for all x ∈ Ω. To solve this

PDE, we can use the gradient flow

∂u

∂t
− ǫ∆u = −f ′(u), x ∈ Ω,

where ǫ > 0. If

f(u) =
1

4
(1 − u2)2,

the result is the Allen-Cahn equation ut − ǫ∆u = u(1 − u2). We impose homogeneous

Dirichlet boundary conditions and initialize the solution with random values uniformly

distributed in (−1, 1)

∂u

∂t
− ǫ∆u = u(1 − u2), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω.
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Figure 4.5: In the top left plot is the quadtree used for the volume integral. The function
used to construct the quadtree is in the right plot of Figure 4.4. The other plots are solutions
of the heat equation at times 10−3, 10−2, and 10−1. The solution is near steady state at the
final time.
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The general behavior of solutions to the Allen-Cahn equation is well known: the stable

stationary solutions are u = 1 and u = −1 and the solution exhibits coarsening towards

these values. The parameter ǫ controls the width of the transition regions between the two

stationary solutions. Smaller ǫ results in sharper interfaces.

We discretize in time with IMEX Euler

uN+1 − uN

∆t
− ǫ∆uN+1 = −f ′(uN ), x ∈ Ω.

Rearranging,

(1 − α2∆)uN+1 = uN − ∆tf ′(uN ), x ∈ Ω, (4.6)

where α2 = ǫ∆t. We march (4.6) in time with ǫ = 2 × 10−5 (Figure 4.6), ǫ = 1 × 10−5

(Figure 4.7), and ǫ = 5 × 10−6 (Figure 4.8). Because the initial condition is random, we

automatically refine the quadtree to level 6; the interpolation error is not used to determine

if a box is subdivided.

We observe the expected coarsening toward the two stationary solutions. For smaller

values of ǫ, the system is less diffusive and we expect more interfaces between the two

stationary solutions. This qualitative behavior is captured in Figures 4.6–4.8.
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Figure 4.6: A solution of the Allen-Cahn equation with ǫ = 2 × 10−5. Here, ∆t = 1 and
IMEX Euler’s method is used. The upper left plot is the initial condition, and proceeding
to the right and then down, the remaining plots are t = 20, t = 60, and t = 100.

Figure 4.7: A solution of the Allen-Cahn equation with ǫ = 1 × 10−5. Here, ∆t = 1 and
IMEX Euler’s method is used. The upper left plot is the initial condition, and proceeding
to the right and then down, the remaining plots are t = 20, t = 60, and t = 100.
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Figure 4.8: A solution of the Allen-Cahn equation with ǫ = 5 × 10−6. Here, ∆t = 1 and
IMEX Euler’s method is used. The upper left plot is the initial condition, and proceeding
to the right and then down, the remaining plots are t = 20, t = 60, and t = 100.



Chapter 5

Fast Multipole Methods

Many problems in scientific computing require evaluating

φ(xi) =

N∑

j=1

qjK(yj ,xi), i = 1, . . . ,M,

where φ is called the potential, {yj}N
j=1 ⊂ R

n the source points, {qj}N
j=1 ⊂ R the source

strengths, {xi}M
i=1 ⊂ R

n the target points, and K : R
n × R

n → R the kernel. Evaluating

discretizations of integral equations with the trapezoidal rule (3.3) or with Alpert’s quadra-

ture rules (3.5) are two examples of problems that require evaluating such sums. In the case

of solving integral equations, the source and target points are the same

φ(xi) =

N∑

j=1
j 6=i

qjK(xj ,xi), i = 1, . . . , N. (5.1)

The target points correspond to the discretization locations, the kernel K corresponds to

the kernel of the integral operator, and the potential corresponds to the evaluation of a

layer potential at a discretization point. The source strengths correspond to the density

function, the arclength term, the quadrature weights, and the Fourier interpolant. The

diagonal terms of K usually require special treatment. For instance, for the trapezoidal

rule (3.3), the diagonal term is replaced with an appropriate term involving the curvature

at xi (see Theorem 2.8).

Computing (5.1) directly for all i = 1, . . . , N requires O(N2) operations. This is too

expensive for the applications in mind and will not be considered further. Instead, we use

a fast method to compute (5.1). The fast multipole method (FMM) was first introduced

67
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by Greengard and Rokhlin [30]. It computes (5.1) in O(N) operations. Originally, it was

designed for the kernel

K(xj ,xi) = − log(|xj − xi|).

Extensions of the original FMM include higher dimensions [8, 16, 31, 25], adaptive struc-

tures [8, 16, 17, 27], other kernels [17, 28, 29, 37], and kernel-free FMMs [49]. In the

remainder of this chapter, we construct a FMM for the two-dimensional Yukawa potential.

We begin by defining the Yukawa potential in Section 5.1. We also state, and prove, the

three classical translation operators of a FMM. In Section 5.2, we outline the key differences

between the original adaptive FMM [12] and the FMM for the Yukawa potential. Section 5.3,

we give timings for three problems that require evaluating the Yukawa potential. Finally,

in Section 5.4, we discuss other fast methods that can be used to solve integral equations.

5.1 Yukawa Potential

The Yukawa potential is

φ(x) =
N∑

j=1

qjK0

( |xj − x|
α

)
. (5.2)

We evaluate φ and its normal derivatives with respect to its source location

φSL(x) =
N∑

j=1

qj
∂

∂νx
K0

( |xj − x|
α

)
, (5.3)

and its target location

φDL(x) =

N∑

j=1

qj
∂

∂νxj

K0

( |xj − x|
α

)
. (5.4)

Equation (5.2) results from discretizations of the single layer potential (2.24), equation (5.3)

results from discretizations of (2.27), and equation (5.4) results from discretizations of (2.29)

and (2.31). In [17], a FMM for evaluating (4.4) is presented. In [12], a fully adaptive two-

dimensional FMM for evaluating several potentials of the form (5.1) is presented. The

combination of methods from these two papers results in a FMM for (5.2)–(5.4). We begin

by defining the potential due to a set S ⊂ R
2 with center s.
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Definition 5.1 Given a set S ⊂ R
2, the potential due to S is

φS(x) =
∑

xj∈S

qjK0

( |xj − x|
α

)
.

The single layer and double layer potentials due to S are

φSL
S (x) =

∑

xj∈S

qj
∂

∂νx
K0

( |xj − x|
α

)
,

φDL
S (x) =

∑

xj∈S

qj
∂

∂νxj

K0

( |xj − x|
α

)
.

The FMM requires a method to separate the kernel’s dependence on two variables. This

allows a set S of nearby source points to be grouped in an expansion for φS . Then, to

evaluate φS(x), this expansion can be evaluated rather than computing φS(x) directly. In

the original FMM [30], Taylor series are used. For (5.2), we use Graf’s Addition Theorem [48,

§11.3 Eqn 8].

Theorem 5.2 (Graf’s Addition Theorem) Let x,y ∈ R
2 have polar coordinates (|x|, θx)

and (|y|, θy) respectively and let θx
y

= θy−x. If |x| > |y|,

Kn

( |y − x|
α

)
ein(θx

y−θx+π) =
∞∑

p=−∞

Kn+p

( |x|
α

)
Ip

( |y|
α

)
eip (θx−θy),

where Ip and Kp are the pth order modified Bessel functions of the first and second kind

respectively.

We use Graf’s Addition Theorem to construct multipole and local expansions of φS , φSL
S ,

and φDL
S .

5.1.1 Multipole Expansions

A multipole expansion of a set S converges to φS(x) when x is sufficiently far from s (left

plot of Figure 5.1). It is particularly useful if S contains a large number of points. Rather

than evaluating the potential due to points in S directly, the multipole expansion can be

evaluated. The multipole expansion is constructed with the following theorem.
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Theorem 5.3 Let S ⊂ R
2 have center s and suppose

|x− s| > |xj − s|

for all xj ∈ S. Then, there exists coefficients {Mp}p∈Z ⊂ C, independent of x, such that

φS(x) =

∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x . (5.5)

The coefficients {Mp} are called the multipole coefficients of φS. The series is called the

multipole expansion of φS.

Proof By Graf’s Addition Theorem,

φS(x) =
∑

xj∈S

qjK0

( |xj − x|
α

)

=
∑

xj∈S

qjK0

( |(xj − s) − (x − s)|
α

)

=
∑

xj∈S

qj

∞∑

p=−∞

Kp

( |x− s|
α

)
Ip

( |xj − s|
α

)
e
ip (θs

x
−θs

xj
)

=
∞∑

p=−∞

Kp

( |x − s|
α

)
eip θs

x

∑

xj∈S

qjIp

( |xj − s|
α

)
e
−ip θs

xj

=
∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x ,

where

Mp =
∑

xj∈S

qjIp

( |xj − s|
α

)
e
−ip θs

xj . (5.6)

2

A multipole expansion of φSL
S is

φSL
S (x) =

∑

xj∈S

qj
∂

∂νx
K0

( |xj − x|
α

)

=
∂

∂νx

∑

xj∈S

qjK0

( |xj − x|
α

)

=
∂

∂νx

∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x ,
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where {Mp} are given by (5.6). Constructing a multipole expansion of φDL
S requires the

calculation

φDL
S (x) =

∑

xj∈S

qj
∂

∂νxj

K0

( |xj − x|
α

)

=
∑

xj∈S

qj
∂

∂νxj

K0

( |(xj − s) − (x − s)|
α

)

=
∑

xj∈S

qj
∂

∂νxj

∞∑

p=−∞

Kp

( |x− s|
α

)
Ip

( |xj − s|
α

)
e
ip (θs

x
−θs

xj
)

=

∞∑

p=−∞

Kp

( |x − s|
α

)
eip θs

x

∑

xj∈S

qj
∂

∂νxj

(
Ip

( |xj − s|
α

)
e
−ip θs

xj

)

=

∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x ,

where

Mp =
∑

xj∈S

qj
∂

∂νx

(
Ip

( |xj − s|
α

)
e
−ip θs

xj

)
.

s

x

s

s̃

x

Figure 5.1: The left plot is a set S (light gray), its center s, and a collection of points
xj ∈ S (open circles). A multipole expansion of φS converges when |x− s| > |xj − s| for all
xj ∈ S. In the right plot, the multipole expansion is shifted from s to s̃. The new multipole
expansion converges when |x− s̃| > |s− s̃| (outside of the dark gray circle).

The FMM requires a method to shift the center of a multipole expansion (right plot of

Figure 5.1). If this is not done, the complexity of forming all multipole coefficients would

be O(N logN). This shift is done with Theorem 5.4.
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Theorem 5.4 Suppose |x− s| > |xj − s| for all xj ∈ S and

φS(x) =

∞∑

p=−∞

MpKp

( |x− s|
α

)
eip θs

x

is the multipole expansion of φS centered at s. Then, the center of the multipole expansion

can be shifted to s̃

φS(x) =
∞∑

p=−∞

M̃pKp

( |x − s̃|
α

)
eip θs̃

x ,

and this new multipole expansion converges when |x− s̃| > |s − s̃|.

Proof By Graf’s Addition Theorem,

φS(x) =
∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x

=

∞∑

p=−∞

MpKp

( |(x − s̃) − (s− s̃)|
α

)
eip θs

x

=

∞∑

p=−∞

Mpe
ip θs

x

(
∞∑

n=−∞

Kp+n

( |x− s̃|
α

)
In

( |s− s̃|
α

)
ein (θs̃

x
−θs̃

s
)

)
e−ip (θs

x
−θs̃

x
+π)

=

∞∑

p=−∞

Mp

∞∑

n=−∞

Kn

( |x− s̃|
α

)
In−p

( |s − s̃|
α

)
ei(n−p) (θs̃

x
−θs̃

s
)eip (θs̃

x
−π)

=
∞∑

p=−∞

Kp

( |x − s̃|
α

)
eip θs̃

x

∞∑

n=−∞

MnIp−n

( |s− s̃|
α

)
e−i(p−n) θs̃

se−inπ

=
∞∑

p=−∞

M̃pKp

( |x − s̃|
α

)
eip θs̃

x ,

where

M̃p =
∞∑

n=−∞

MnIp−n

( |s − s̃|
α

)
e−i(p−n) θs̃

se−inπ. (5.7)

2

Since the multipole expansion of φDL
S is in the form (5.5), we can use Theorem 5.4 to

shift its center. Shifting the center of φSL
S is accomplished by interchanging the summation

and normal derivative.
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5.1.2 Local Expansions

Multipole expansions of φS(x) could be evaluated at a large number of points, but instead,

we convert the multipole expansion to a local expansion and then evaluate locally. This

reduces the complexity of evaluating φS at all target points from O(N logN) to O(N).

Suppose S̃ has center s̃ with |x − s̃| < |s − s̃| for all x ∈ S̃. Then, the multipole expansion

of φS can be converted to a local expansion centered at s̃ (Figure 5.2) with the following

theorem.

s

s̃

x

Figure 5.2: A set S (light gray), its center s, and a collection of xj ∈ S (open circles). The
multipole expansion of φS is converted to a local expansion centered at s̃ and converges in
S̃ (dark gray).

Theorem 5.5 Suppose |x− s| > |xj − s| for all xj ∈ S and

φS(x) =
∞∑

p=−∞

MpKp

( |x− s|
α

)
eip θs

x

is a multipole expansion of φS centered at s. Then, if |x− s̃| < |s− s̃|, there exist coefficients

{Lp}p∈Z ⊂ C, independent of x, such that

φS(x) =
∞∑

p=−∞

LpIp

( |x − s̃|
α

)
e−ip θs̃

x . (5.8)

The coefficients {Lp} are called the local coefficients of φS. The series is called the local

expansion of φS.
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Proof By Graf’s Addition Theorem,

φS(x) =

∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x

=

∞∑

p=−∞

MpKp

( |(x − s̃) − (s − s̃)|
α

)
eip θs

x

=
∞∑

p=−∞

Mpe
ip θs

x

∞∑

n=−∞

Kp+n

( |s− s̃|
α

)
In

( |x− s̃|
α

)
ein (θs̃

s
−θs̃

x
)e−ip (θs

x
−θs̃

s
+π)

=
∞∑

p=−∞

Ip

( |x − s̃|
α

)
e−ip θs̃

x

∞∑

n=−∞

MnKn+p

( |s− s̃|
α

)
ei(p+n) θs̃

se−inπ

=

∞∑

p=−∞

LpIp

( |x− s̃|
α

)
e−ip θs̃

x ,

where

Lp =

∞∑

n=−∞

MnKn+p

( |s − s̃|
α

)
ei(p+n) θs̃

se−inπ. (5.9)

2

The multipole expansions φSL
S and φDL

S are converted to local expansions in a similar fashion

to how we shift their multipole expansions. This conversion only requires taking the normal

derivative of the correct terms.

To construct the third translation operator, we require another addition theorem similar

to Graf’s Addition Theorem [48, §11.3 Eqn 7].

Theorem 5.6 Let x and y have polar coordinates (|x|, θx) and (|y|, θy) respectively. Then,

with no restrictions on x and y,

Ip

( |y − x|
α

)
e−ip(θx

y
−θy) =

∞∑

n=−∞

In

( |x|
α

)
Ip+n

( |y|
α

)
ein(θx−θy+π).

Using Theorem 5.6, we can shift the center of a local expansion.

Theorem 5.7 The center of a local expansion can be shifted from s to s̃

∞∑

p=−∞

LpIp

( |x − s|
α

)
e−ip θs

x =

∞∑

p=−∞

L̃pIp

( |x− s̃|
α

)
e−ip θs̃

x .
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Proof

∞∑

p=−∞

LpIp

( |x − s|
α

)
e−ip θs

x

=

∞∑

p=−∞

LpIp

( |(x − s̃) − (s − s̃)|
α

)
e−ip θs

x

=

∞∑

p=−∞

Lpe
−ip θs

x

(
∞∑

n=−∞

In

( |s − s̃|
α

)
Ip+n

( |x− s̃|
α

)
ein (θs̃

s
−θs̃

x
+π)

)
eip (θs

x
−θs̃

x
)

=
∞∑

p=−∞

Lp

∞∑

n=−∞

In−p

( |s − s̃|
α

)
In

( |x − s̃|
α

)
ei(n−p)(θs̃

s−θs̃
x+π)e−ip θs̃

x

=
∞∑

p=−∞

Ip

( |x− s̃|
α

)
e−ip θs̃

x

∞∑

n=−∞

LnIp−n

( |s− s̃|
α

)
ei(p−n)(θs̃

s+π)

=

∞∑

p=−∞

L̃pIp

( |x − s̃|
α

)
e−ip θs̃

x ,

where

L̃p =

∞∑

n=−∞

LnIp−n

( |s− s̃|
α

)
ei(p−n)(θs̃

s
+π). (5.10)

2

5.1.3 Plane Wave Expansions

Plane wave expansions are used to further accelerate the FMM. We briefly show how to

convert a multipole expansion to a plane wave expansion. A detailed account can be found

in Appendix A of [17] and references therein. Let x > 0 and (x, y) ∈ R
2 have polar

coordinates (r, θ). Then,

Kn

( r
α

)
einθ =

1

2

∫ ∞

0

e−x
√

λ2+1/α2

√
λ2 + 1/α2

[
eiλyαn

(√
λ2 + 1/α2 + λ

)n

+ e−iλyαn
(√

λ2 + 1/α2 − λ
)n]

dλ. (5.11)

There exists similar integral representations for x < 0, y > 0, and y < 0. Using quadrature

rules for these representations, we can convert a multipole expansion (5.5) to a plane wave

(exponential) expansion. Using the property ex+y = exey, the center of the plane wave
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expansion can be shifted to a new center. Then, the plane wave expansion is converted to

a local expansion using the formula [1, Eqn 9.6.19]

ez cos(θ) = I0(z) + 2

∞∑

k=1

Ik(z)cos(kθ). (5.12)

Quadrature rules for infinite integrals such as (5.11) are discussed in [17].

5.2 Yukawa FMM

We do not introduce typical definitions of the FMM such as the interaction list and the near

neighbors as these definitions are well presented in [12]. Rather, we outline the key points

that pertain to the Yukawa potential.

The FMM requires computing several infinite summations. In particular, evaluating

multipole and local expansions as well as the translation operators (5.7) and (5.9). These

summations are truncated at some level P . For instance,

φS(x) =
∞∑

p=−∞

MpKp

( |x − s|
α

)
eip θs

x ≈
P∑

p=−P

MpKp

( |x − s|
α

)
eip θs

x .

Sharp bounds on this error have not been established, but myself and the authors of [17]

have observed numerically that 16 digits accuracy are achieved with P = 42 and 8 digits

accuracy are achieved with P = 21. Similar results are also found in [3] for the FMM

applied to Helmholtz equation ∆u + k2u = 0. Truncating the summations at P results in

the following complexities:

• Forming the multipole expansion (5.6) due to a single point requires O(P ) operations.

• Translating a multipole expansion (5.7) requires O(P 2) operations.

• Converting a multipole expansion to a local expansion (5.9) requires O(P 2) operations.

• Translating a local expansion (5.10) requires O(P 2) operations.

• Evaluating a multipole expansion (5.5) or local expansion (5.8) at a single point re-

quires O(P ) operations.

These complexities assume that symmetries such as M−p = Mp and L−p = Lp are exploited.
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5.2.1 Quadtree Construction

The FMM starts with a quadtree structure similar to that generated in Chapter 4. We

outline the key characteristics of the quadtrees required for the Yukawa potential. A more

thorough construction of quadtrees is found in [12]. The notions of grid level, children, and

childless boxes remain unchanged. When constructing the quadtree, a box is subdivided if it

contains more than some preset maximum number of points nmax. Unlike the quadtree con-

structed in Chapter 4, there are no restrictions on neighboring boxes. Figure 5.4 illustrates

a typical quadtree with 32,768 particles inside [−1/2, 1/2]2. Each childless box has less than

30 particles. Figure 5.5 is a typical quadtree for an integral equation. The quadtree is far

from uniform because the particles lie on one-dimensional curves.

5.2.2 Forming Expansions

The goal of the FMM is to form local expansions that converge to the potential due to all

points that are sufficiently far from the center of the expansion. This is done in a hierar-

chical manner by forming multipole expansions (5.6), shifting multipole expansions (5.7),

converting them to local expansions (5.9), and shifting local expansions (5.10).

Suppose we have constructed a quadtree with M total boxes for N source points. We

construct multipole expansions, local expansions, and plane wave expansions for φS(x) (or

φSL
S (x) or φDL

S (x)) for all boxes S in the quadtree. The multipole coefficients are formed

first. Beginning at the finest level of the quadtree, if a box S is childless, its multipole

coefficients are formed with (5.6); for boxes with children, its multipole expansion is formed

by summing the multipole expansions of its children. This requires shifting each child’s

center to the center of the parent using (5.7). Since every particle is contained in exactly

one childless box, O(NP ) operations are required to form the multipole coefficients of the

childless boxes. O(MP 2) operations are required to shift each multipole expansion to its

parent.

Once multipole coefficients are formed for all boxes, we construct local expansions from

the coarsest to finest level. For each box s, we convert the multipole expansions of its

interaction list to a local expansion centered at s using (5.9). Then, the local expansion

is translated to the four children of s using (5.10). A box has at most 27 boxes in its

interaction list, thus O(27MP 2) operations are required to convert multipole expansions to

local expansions. Shifting the local expansions from the parent boxes to their four children
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requires O(MP 2) operations.

The most expensive part of the FMM is translating multipole expansions to local expan-

sions. Alternatively, we can use plane wave expansions. Converting a multipole expansion

to a plane wave expansion (5.11) and a plane wave expansion to a local expansion (5.12)

each require O(P 2) operations. However, translating a plane wave expansion to 27 new

centers requires O(27P ) instead of O(27P 2) operations.

Defining the interaction list and near neighbors is sufficient for a uniform quadtree.

However, for an adaptive quadtree, some additional care must be taken. In Figure 5.3,

the potential due to S (the shaded region) needs to evaluated at points inside S̃. Direct

calculations can not be used since S may contain more than nmax particles. The multipole

expansion of S can not be translated to a local expansion of S̃ since it will not converge in

all of S̃. However, the multipole expansion of S converges at every point in S̃. Therefore,

for each point x ∈ S̃, we evaluate the multipole expansion of φS . These added complications

to adaptive quadtrees are addressed in [12], and are called List 1, List 2, List 3, List 4, and

List 5. In Figure 5.3, the shaded box is in List 3 of S̃.

S̃

Figure 5.3: A box S̃ and a box S (shaded region) that has too many particles to evaluate
φS directly and is too close to S̃ to translate the multipole coefficients to local coefficients
(the local expansion would only converges inside the circle). Alternatively, the multipole
expansion of φS is evaluated at all points in S̃.

Once all the local expansions are formed, the result is an expansion for each childless

box s that converges to the potential due to all particles that are well-separated from s. The
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potential due to the remainder of the particles is handled either with one of the five lists,

or is handled directly. The FMM is constructed so that the total number of points that is

handled directly is O(1). So, to evaluate the potential at a single point, we require O(P )

operations to evaluate the local expansion, O(1) operations to evaluate the particles that

are done directly, and O(MP 3) operations (see [12]) to handle the nonadaptive quadtree

complexities. The result is a method whose operation count scales asymptotically with N .

5.3 Numerical Examples

We compare timings and errors for the FMM. We start with a simple configuration for

an increasing number of points N . Then, we look at timings for solving the modified

Helmholtz equation with Dirichlet boundary conditions (2.21) and Neumann boundary con-

ditions (2.22).

5.3.1 Timings for N Random Points

We evaluate the Yukawa potential φ(x) at N points with half of them randomly distributed

in [−1/2, 1/2]2 and the other half distributed on two elliptical boundaries (Figure 5.4). The

results in Table 5.1 verify the quadratic scaling in the direct calculation, the near-linear

scaling in the FMM, and the speedup that results from introducing plane wave expansions.

The errors of the FMM without the plane wave expansion agree with the truncation level,

P = 41, of the expansions. The error of the FMM with plane wave expansions is slightly

larger since the quadrature rules for the plane wave expansions only guarantee 13 digits

accuracy.

5.3.2 Timings for a Dirichlet Problem

We present timings in Table 5.2 for solving the integral equation for the interior Dirichlet

example in Chapter 3. We solve the integral equation with the trapezoidal rule, and with

Alpert’s quadrature rule with error O(h8 log h). The total number of GMRES iterations is

45. We also list the size of the quadtree and the time required for its generation. The top

two plots of Figure 5.5 illustrate the quadtree when N = 2816.

We can conclude that the FMM is achieving linear scaling for the trapezoidal rule, and

near-linear scaling for Alpert’s quadrature rules. The reduction in speed results from the
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Figure 5.4: In the left plot is the quadtree without particles. The particles are included in
the right plot. Here, N = 32, 768 and no more than 30 points are in each childless box.

N Direct Original FMM Max Error Plane Wave FMM Max Error

64 0.01 0.06 2.22 × 10−15 0.06 2.22 × 10−15

128 0.03 0.08 1.85 × 10−14 0.08 1.85 × 10−14

256 0.08 0.22 8.88 × 10−15 0.12 2.93 × 10−14

512 0.30 0.47 8.88 × 10−15 0.21 2.77 × 10−13

1,024 1.15 1.03 1.11 × 10−14 0.36 3.44 × 10−13

2,048 4.59 2.02 1.60 × 10−14 0.60 3.52 × 10−13

4,096 18.26 3.86 2.09 × 10−14 1.36 3.65 × 10−13

8,192 73.42 9.46 2.88 × 10−14 2.02 3.22 × 10−13

16,384 292.52 14.80 3.69 × 10−14 4.60 5.26 × 10−13

32,768 1168.22 38.44 6.00 × 10−14 7.04 3.44 × 10−13

65,536 4689.96 56.55 8.08 × 10−14 17.42 3.61 × 10−13

Table 5.1: A comparison of the CPU time (in seconds) required to compute the potential
due to a set a points directly, via the original FMM , and via the FMM with plane wave
expansions. Half of the points are randomly placed in the unit square and the other half
are concentrated on two elliptical boundaries.
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N Quadtree Size Quadtree Time Trapezoidal Time Quadrature Time

704 42 (4) 0.02 11.97 13.05
1,408 111 (5) 0.02 20.11 2.38
2,816 183 (7) 0.02 40.09 44.38
5,632 331 (8) 0.03 80.19 89.36

Table 5.2: A comparison of the CPU time (in seconds) to compute the quadtree, solve the
integral equation with the trapezoidal rule, and solve the integral equation with Alpert’s
quadrature rules. Also listed is the size of the quadtree with its finest level in parentheses.

Fourier transforms computed from using the Fourier interpolant discussed in Section 3.2.

We also see that the time required to generate the quadtree is negligible.

5.3.3 Timings for a Neumann Problem

We present timings in Table 5.3 for solving the integral equation for the exterior Neumann

example in Chapter 3. We solve the integral equation with the trapezoidal rule and with

Alpert’s quadrature rule with error O(h8 log h). Here, α = 1, which requires 23 GMRES

iterations to solve the integral equation. The bottom two plots of Figure 5.5 illustrate the

quadtree when N = 2560.

N Quadtree Size Quadtree Time Trapezoidal Time Quadrature Time

640 34 (4) 0.01 3.96 4.50
1,280 93 (5) 0.01 5.87 6.91
2,560 163 (7) 0.01 12.01 13.69
5,120 308 (8) 0.03 23.81 27.82

Table 5.3: A comparison of the CPU time (in seconds) to compute the quadtree, solve the
integral equation with the trapezoidal rule, and solve the integral equation with Alpert’s
quadrature rules. Also listed is the size of the quadtree with its finest level in parentheses.

We can draw the same conclusions as with the previous example. The trapezoidal rule

is computed in linear time and Alpert’s quadrature rules in near-linear time. The drastic

reduction in computational time when comparing Tables 5.2 and 5.3 is attributed to the

required number of GMRES steps. The Neumann problem only required 23 while the

Dirichlet problem required 45.
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Figure 5.5: The quadtrees for the interior problem (top two figures) and for the exterior
problem (bottom two figures). The interior problem has 2816 particles and the exterior
problem has 2560 particles.
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5.4 Other Fast Methods

There are other fast methods that have been developed for evaluating (5.1). Tree-code meth-

ods, first introduced in [6], closely resemble the FMM. As in the FMM, tree-code methods

form multipole expansions of a quadtree; however, they do not form local expansions. Also,

the multipole expansion of every box in the quadtree are formed directly as in (5.6). Since

every particle is in exactly one box at each level of the quadtree, forming the multipole

expansions requires O(PN logN) operations. Then, for each particle, a sequence of expan-

sions of well-separated boxes needs to be evaluated. The overall complexity of a tree-code

method is O(N logN).

A new and promising method for solving integral equations is direct methods [40]. Un-

like iterative solvers, these methods construct a compressed factorization of the inverse of

the matrix corresponding to the discretization of the integral equation. The cost of initially

computing the inverse may cost more than the FMM. For instance, in [40], Laplace’s equa-

tion with Dirichlet boundary conditions is solved in an exterior domain with N = 102, 400

points. The direct method required 13 seconds to solve the integral equation whereas the

FMM matrix-vector multiply required 0.96 seconds. Thus, if the GMRES count is less than

13, the FMM outperforms the direct method. However, once the inverse is computed, it

only requires 0.12 seconds to apply it to a right-hand side. This is of particular interest

to work in this thesis since at each time step, the same integral equation must always be

solved, only with a different right-had side.



Chapter 6

Conclusions and Future Direction

6.1 Future Direction

A general framework has been laid out for solving the nonlinear heat equation in multiply-

connected two-dimensional domains. However, to be able to apply this machinery in a more

general setting, issues that need to be resolved are:

• The extension of g throughout the computational domain D remains an open problem.

For the fourth-order solver developed in [17], a C2 extension may be sufficient, but

more smoothness would be required if a higher-order volume integral was developed.

• In order to resolve solution features that may appear or disappear, such as in the Allen-

Cahn equation, it may be necessary to dynamically generate the quadtree throughout

the simulation. However, generating the quadtree for the forced problem is expensive

and information would have to be transferred from one quadtree to another.

• The near-singular integration strategy was implemented and tested on the forced mod-

ified Helmholtz equation. However, it has not been applied in a general time-stepping

scheme.

Other applications require the solution of fourth-order PDEs. We discuss two such

problems.

84
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6.1.1 The Navier-Stokes Equations in Two Dimensions

The two-dimensional incompressible Navier-Stokes equations

∂u

∂t
+ (u · ▽)u =

1

Re
(−▽p+ ∆u), x ∈ Ω, t > 0,

▽ · u = 0, x ∈ Ω, t > 0,

u = h, x ∈ Γ, t > 0,

u = u0, x ∈ Ω, t = 0,

can be recast by introducing a stream function ψ satisfying

u = (ψy,−ψx).

ψ satisfies

∂

∂t
∆ψ − 1

Re
∆2ψ = J [ψ,∆ψ], x ∈ Ω, t > 0, (6.1a)

▽ψ = h⊥, x ∈ Γ, t > 0, (6.1b)

▽ψ = u⊥
0 , x ∈ Ω, t = 0, (6.1c)

where (x, y)⊥ = (−y, x) and J is the Jacobian operator J [u, v] = uxvy − uyvx. The stream

function formulation guarantees u will satisfy the incompressibility constraint and eliminates

the pressure term. However, the order of the PDE is increased from two to four.

We discretize (6.1) in time and treat the stiff term, in this case the biharmonic term,

implicitly. The simplest example is

∆ψN+1 − ∆ψN

dt
− 1

Re
∆2ψN+1 = J [ψN ,∆ψN ], x ∈ Ω, (6.2)

▽ψN+1 = h⊥, x ∈ Γ,

ψ0 = u⊥
0 , x ∈ Ω.

Rearranging (6.2),

(∆ − α2∆2)ψN+1 = ∆ψN + dtJ [ψN ,∆ψN ],

where α2 = dt/Re. As we saw in Chapter 2, regardless of the IMEX method, the PDE to

be solved at each time step is

(∆ − α2∆2)ψN+1 = b,
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where b = b[ψN ,∆ψN , ψN−1,∆ψN−1, . . . , ψN−p+1,∆ψN−p+1]. Thus, we develop integral

equation methods for

(∆ − α2∆2)ψ = g, x ∈ Ω,

∂ψ

∂ν
= f1, x ∈ Γ,

∂ψ

∂τ
= f2, x ∈ Γ,

where τ = ν⊥, f1 = h⊥ · ν, and f2 = h⊥ · τ . We adopt the same strategy of writing

ψ = ψP + ψH where

(∆ − α2∆2)ψP = g,

and

(∆ − α2∆2)ψH = 0,

∂ψH

∂ν
= f1 −

∂ψP

∂ν
,

∂ψH

∂τ
= f2 −

∂ψP

∂τ
.

This methodology for solving the two-dimensional Navier-Stokes equations was adopted

in [38]. Rather than using integral equations, the PDEs were solved with a Fourier expansion

in the azimuthal direction and a Chebyshev expansion in the radial direction. However, this

method requires the domain to be circular. We wish to extend the work to more general

domains.

Progress towards solving the homogeneous problem is now discussed. To simplify no-

tation, we let λ = 1/α, redefine f1 and f2, and multiply the homogeneous PDE by −1,

(∆2 − λ2∆)ψH = 0, x ∈ Ω, (6.3a)

∂ψH

∂ν
= f1, x ∈ Γ, (6.3b)

∂ψH

∂τ
= f2, x ∈ Γ. (6.3c)

We also assume that the domain Ω is a simply-connected bounded domain. Exterior and

multiply-connected domains will lead to a rank deficiency in the upcoming integral equa-

tions, and an approach such as that taken in [24] will have to be implemented.



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTION 87

We begin with finding the fundamental solution G of (∆2 − λ2∆). The fundamental

solution (∆ − λ2) is

− 1

2π
K0(λ|x|),

so, G satisfies the PDE

∆G = − 1

2π
K0(λ|x|).

Moving to polar coordinates

1

r

∂

∂r

(
r
∂G

∂r

)
= − 1

2π
K0(λr).

Multiplying by r and integrating,

r
∂G

∂r
= −−λrK1(λr) + 1

2πλ2
.

Dividing by r and integrating,

G(r) = − 1

2πλ2
(log r +K0(λr)).

Thus, the fundamental solution of (∆2 − λ2∆) is

G(x) = − 1

2πλ2
(log |x| +K0(λ|x|))

Since there are two boundary conditions, two layer potentials are required. We seek a

solution in the form

ψH(x) =

∫

Γ
G1(y − x)σ1(y)dsy +

∫

Γ
G2(y − x)σ2(y)dsy,

where G1 and G2 are linear combinations of derivatives of G. Then, ψH automatically

satisfies (6.3a). The boundary conditions (6.3b) and (6.3c) are found by solving a system of

integral equations. The system of integral equation is constructed by taking the limit of the

normal and tangential derivatives of ψH and matching them with f1 and f2 respectively.

We pick G1 and G2 so that the system is well-conditioned and the diagonal terms are

computationally manageable. Using (2.19), the asymptotic expansion of G at the origin is

1

8π
log |x|

(
|x|2 +

1

16
λ2|x|4 + O(|x|6)

)
+ p(λ|x|),
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where p is an even polynomial. Thus, the singularity of G is

1

8π
|x|2 log |x|,

which is the fundamental solution of the biharmonic operator ∆2. The biharmonic equation

was solved using a system of integral equations, with Neumann and tangential boundary

conditions in [22]. As the fundamental solutions of this PDE has the same behavior at their

singularity, we can use the same choices for G1 and G2. A slight modification of the choices

in [22], which are altered so that some of the bounded terms vanish, is

G1 = −2Gνν +
(
∆ − λ2

)
G,

G2 = −2Gννν + 3
(
∆ − λ2

)
Gν .

We define

G11(x) =
∂

∂νx
G1, G21(x) =

∂

∂τx
G1,

G12(x) =
∂

∂νx
G2, G22(x) =

∂

∂τx
G2.

Again, using results from [22], the resulting system of integral equations is

f1(x0) =
1

2
σ1(x0) − κ(x0)σ2(x0)

+

∫

Γ
G11(y − x0)σ1(y)dsy +

∫

Γ
G12(y − x0)σ2(y)dsy, (6.4a)

f2(x0) =
1

2

d

ds
σ2(x0)

+

∫

Γ
G21(y − x0)σ1(y)dsy +

∫

Γ
G22(y − x0)σ2(y)dsy, (6.4b)

or in matrix form

f(x0) = D[σ](x0) +

∫

Γ
A(y − x0)σ(y)dsy,

where

f(x0) =

(
f1(x0)

f2(x0)

)
, σ(x0) =

(
σ1(x0)

σ2(x0)

)
,

D =

(
1
2 −κ
0 1

2
d
ds

)
,
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A(y − x0) =

(
G11(y − x0) G12(y − x0)

G21(y − x0) G22(y − x0)

)
.

κ(x0) is the curvature of Γ at x0 and d/ds is the arclength derivative.

This is not yet a Fredholm integral equation of the second kind. We need the matrix D

to be constant. The problematic terms in D are the term involving the curvature and the

term involving the arclength derivative. We eliminate them with a preconditioner outlined

in [22]. We first construct an indefinite integral operator P satisfying

d

ds
P (σ(x0)) = σ(x0)

for all σ. It is problem dependent, but is readily available. If r(θ) with θ ∈ [0, 2π) is a

parameterization of Γ, we choose

P [σ](x) =

∫ θ

0
σ(r(ω))|r′(ω)|dω,

where x = r(θ). Then

d

ds
P [σ](x) =

d

ds

∫ θ

0
σ(r(ω))|r′(ω)|dω

=
1

|r′(θ)|
d

dθ

∫ θ

0
σ(r(ω))|r′(ω)|dω

=
1

|r′(θ)|σ(r(θ))|r′(θ)|

= σ(x).

So,

d

ds
P [σ] = σ

as desired. We note that P can be calculated with spectral accuracy if we first compute the

Fourier series of the integrand

σ(r(ω))|r′(ω)| =
∑

n∈Z

cne
inω.

Then,

P [σ](x) = c0θ −
∑

n 6=0

cn
in

+
∑

n 6=0

cn
in
einθ,
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which is the sum of a linear function in θ and a Fourier series.

We construct the preconditioner

E =

(
2I 4κP

0 2P

)
,

which satisfies DE = I. Then, a solution of (6.4) is σ = Eζ where ζ solves

(I +AE)ζ = f. (6.5)

Equation (6.5) has no derivatives or curvature in the jump terms. Thus, it is a Fredholm

integral equation of the second kind. Moreover, the following asymptotic expansions hold [1]

lim
y→x0

y∈Γ

G11(y − x0) =
κ(x0)

2π
,

lim
y→x0

y∈Γ

G21(y − x0) = 0,

lim
y→x0

y∈Γ

G12(y − x0) =
3

32π
(−8κ(x0)

2 + 4λ2 log(λ/2) − 3λ2 + 4λ2γ + 4λ2 log |y − x0|),

lim
y→x0

y∈Γ

G22(y − x0) = 0.

Three of the four kernels are bounded and continuous which guarantees that the integral

operators are compact. The integral operator with kernel G12 is also compact since the

singularity is only logarithmic [5, 18]. The preconditioner E is also compact. Thus, the

Fredholm Alternative can be applied to discuss the existence and uniqueness of solutions

of (6.5).

We demonstrate this method with two numerical examples. Because of the nature of

the singularities, the trapezoidal rule with N points is used for G11, G21, and G22, while

Alpert’s quadrature rules are used for G12. Since we are solving for two density functions,

the total number of unknowns is 2N .

In the first example, λ = 2 and Ω is the ellipse whose boundary is r(θ) = (cos(θ), 2 sin(θ)).

We use the normal and tangential derivatives of the exact solution ψH(x) = I0(2|x|). The

errors, timings, and total number of GMRES steps are summarized in Table 6.1. We see

third-order convergence which results from the modified Bessel functions in the kernels.

Higher-order quadrature rules for all the kernels would improve the accuracy. We also see

quadratic scaling in the timings to perform a single GMRES step. Using a FMM would
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N GMRES Iterations Time per Iteration Total Time Error

64 11 4.18 × 10−2 0.46 3.07 × 10−3

128 10 1.69 × 10−1 1.69 3.86 × 10−4

256 11 5.83 × 10−1 6.41 4.82 × 10−5

512 13 1.93 × 100 25.15 6.03 × 10−6

1024 13 8.34 × 100 108.45 7.54 × 10−7

Table 6.1: The maximum error is computed at points that are well away from Γ. The
number of points, N , is the total number of discretization points. Since we are solving for
two density functions, the total number of unknowns is in fact 2N . Timings are given in
seconds.

reduce the required time to O(N) or O(N logN). Finally, we see that the total number of

GMRES steps does not grow with N .

In the second example, we take λ = 1 and let the geometry be a starfish shape. We take

the boundary conditions

∂ψH

∂ν
= −1,

∂ψH

∂τ
= 0.

Contour and surface plots are illustrated in Figure 6.1

 

 

−0.04
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−0.02

−0.01

0

Figure 6.1: The domain Ω resembles a starfish. A total number of 2000 points is used
to establish high-order accuracy near Γ. 36 GMRES iterations are required to achieve an
accuracy of 10−10.
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6.1.2 Cahn-Hilliard

The Cahn-Hilliard equation is

∂c

∂t
= D∆(c3 − c− γ∆c), (6.6)

where γ > 0 and D > 0. One possible temporal discretization of (6.6) is

cN+1 − cN

dt
= D∆(cN )3 −D∆cN −Dγ∆2cN+1.

Rearranging,

(1 + dtDγ∆2)cN+1 = cN + dtD∆(cN )3 − dtD∆cN .

This motivates developing integral equation methods for the operator (1 + α2∆2). There

are also many other problems that involve the operator

∂u

∂t
+ β2∆2

in areas such as elasticity. Temporal discretizations of this PDE would again result in the

operator (1 + α2∆2).

6.2 Conclusions

Integral equations offer an exciting alternative for solving PDEs arising in physics and

engineering. By coupling them with fast algorithms, large-scale problems with complex

geometries can be solved with high accuracy. In this thesis, we developed fast integral equa-

tion methods for the modified Helmholtz equation for the purpose of solving the forced heat

equation. We based the approach on Rothe’s method where first a temporal discretization

is done, then the resulting sequence of elliptic boundary value problems are solved.

Chapter 2 discussed temporal discretizations of the nonlinear heat equation and devel-

oped potential theory for the resulting modified Helmholtz equation. The homogeneous

modified Helmholtz equation was recast as a boundary integral equation and existence and

uniqueness of the homogeneous PDE and the boundary integral equation were established.

Chapter 3 developed numerical methods for the boundary integral equations from Chap-

ter 2. The trapezoidal rule failed to achieve the desired spectral accuracy because of a loss

of smoothness of the integral operators’ kernels. Instead, we adopted high-order quadrature
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rules designed for functions with logarithmic singularities. By coupling these quadrature

rules with Fourier interpolation, high-order accuracy was achieved. A near-singular inte-

gration was applied to guarantee a uniform bound for the error of the solution of the PDE.

These methods were applied to both interior and exterior, multiply-connected domains,

with either Dirichlet or Neumann boundary conditions. In Chapter 4, a volume integral

developed in [17] was coupled with methods from Chapter 3 to build a solver for the forced

modified Helmholtz equation. This required extending the forcing function from the domain

Ω to a box D containing Ω. Three options for constructing this extension were described

and compared. It became apparent that a smooth, compactly supported extension is im-

portant. Numerical examples demonstrated the capabilities and limitations of the method.

Chapter 5 developed a particle-based fast multipole method for solving the linear systems

in Chapter 3. Timings and errors were demonstrated.

Future directions of this thesis include solving a larger variety of PDEs that can be

interpreted as a forced heat equation. This includes reaction-diffusion, variational, and

fluid dynamics problems. This requires a more careful implementation of near-singular

integration and smoother extensions of arbitrary functions. Another future direction is the

development of integral equation methods for PDEs whose order is greater than two. This

includes the two-dimensional Navier-Stokes equations and the Cahn-Hilliard equation.
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