47 research outputs found

    From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide

    Full text link
    We report on susceptibility measurements in the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2, which demonstrate the existence of a magnetic quantum critical point (QCP) governing the electronic properties. The investigated low frequency susceptibility displays a scaling behavior with both the temperature T and the magnetic field B ranging from the high-T non-Fermi liquid down to the low-T Fermi liquid. Whereas the inferred scaling form can be discussed within the standard framework of the quantum critical phenomena, the determined critical exponents suggest an unconventional magnetic QCP of a potentially generic type. Accordingly, these quantum critical fluctuations account for the anomalous logarithmic temperature dependence of the thermopower. This result allows us to conjecture that quantum criticality can be an efficient source of enhanced thermopower

    Magnetoresistance scaling in the layered cobaltate Ca3Co4O9

    Full text link
    We investigate the low temperature magnetic field dependences of both the resistivity and the magnetization in the misfit cobaltate Ca3Co4O9 from 60 K down to 2 K. The measured negative magnetoresistance reveals a scaling behavior with the magnetization which demonstrates a spin dependent diffusion mechanism. This scaling is also found to be consistent with a shadowed metalliclike conduction over the whole temperature range. By explaining the observed transport crossover, this result shed a new light on the nature of the elementary excitations relevant to the transport

    X-ray Dichroism and the Pseudogap Phase of Cuprates

    Full text link
    A recent polarized x-ray absorption experiment on the high temperature cuprate superconductor Bi2Sr2CaCu2O8 indicates the presence of broken parity symmetry below the temperature, T*, where a pseudogap appears in photoemission. We critically analyze the x-ray data, and conclude that a parity-breaking signal of the kind suggested is unlikely based on the crystal structures reported in the literature. Possible other origins of the observed dichroism signal are discussed. We propose x-ray scattering experiments that can be done in order to determine whether such alternative interpretations are valid or not.Comment: final version to be published in Phys Rev B: some calculational details added, clarification of XNLD contamination and biaxiality, more discussion on possible space groups and previous optics result

    New electronic orderings observed in cobaltates under the influence of misfit periodicities

    Full text link
    We study with ARPES the electronic structure of CoO2 slabs, stacked with rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi Surfaces (FS) in phases with different doping and/or periodicities reveal the influence of the RS potential on the electronic structure. We show that these RS potentials are well ordered, even in incommensurate phases, where STM images reveal broad stripes with width as large as 80\AA. The anomalous evolution of the FS area at low dopings is consistent with the localization of a fraction of the electrons. We propose that this is a new form of electronic ordering, induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the FS becomes smaller than the Brillouin Zone of the stacked structure

    Experimental study of the incoherent spectral weight in the photoemission spectra of the misfit cobaltate [Bi2Ba2O4][CoO2]2

    Full text link
    Previous ARPES experiments in NaxCoO2 reported both a strongly renormalized bandwidth near the Fermi level and moderately renormalized Fermi velocities, leaving it unclear whether the correlations are weak or strong and how they could be quantified. We explain why this situation occurs and solve the problem by extracting clearly the coherent and incoherent parts of the band crossing the Fermi level. We show that one can use their relative weight to estimate self-consistently the quasiparticle weight Z, which turns out to be very small Z=0.15 +/- 0.05. We suggest this method could be a reliable way to study the evolution of correlations in cobaltates and for comparison with other strongly correlated systems

    Influence of pulsed laser deposition growth conditions on the thermoelectric properties of Ca3Co4O9 thin films

    Full text link
    Thin films of the misfit cobaltite Ca3Co4O9 were grown on (0001)-oriented (c-cut) sapphire substrates, using the pulsed-laser deposition techniques. The dependence of the thermoelectric/transport properties on the film growth conditions was investigatedComment: To be published in J. Appl. Phy

    Ordres complexes et apériodicités

    No full text
    Some basic theoretical considerations showed that the classical description of the crystalline state through a three dimensional periodicity is not sufficient to take into account all the possible long range order atomic structures. This long range order can be associated to a supercrystal described in a superspace of dimension n>3n>3. The real aperiodic structure and its experimental diffraction pattern can be recovered through a section-projection method in the superspace. Some actual examples of this aperiodic order are the quasicrystals, the modulated structures and the misfit compounds. Their specificities are described here et some structural examples are given to illustrate the previous theoretical considerations.Quelques considérations théoriques simples ont montré que la description de l'ordre cristallin par une triple périodicité n'est pas suffisante pour rendre compte de la notion d'ordre à grande distance. Celle-ci peut être retrouvée à travers une méthode de section-projection d'un supercristal dans un espace de dimension n>3n>3. Des réalisations concrètes de cet ordre apériodique sont les quasicristaux, les structures modulées et les structures composites. Leurs particularités sont décrites ici et quelques exemples de structures illustrent les considérations théoriques précédentes

    Modulated misfit structure of the thermoelectric [Bi0.84CaO 2]2[CoO2]1.69 cobalt oxide

    Full text link
    The structure of the thermoelectric lamellar misfit cobalt oxide [Bi 0.84CaO2]2[CoO2]1.69 has been refined using single crystal X-ray diffraction data. Using the four dimensional superspace formalism for aperiodic structures, the superspace group is confirmed P2/m(0δ1/2) (a1 = 4.9069(4), b1 = 4.7135(7), b2 = 2.8256(4), c1 = 14.668(5) Å, β1 = 93.32(1)°). The modulated displacements and site occupancies have been refined and are both compatible with the misfit character of the structure, and with a longitudinal modulation of the Bi-O layers of the structure. This modulation is similar to the corresponding one in the related Sr phase [Bi0.87SrO2]2[CoO2]1.82, but now oriented in the orthogonal direction. Because its incommensurate wavelength is locked with the aperiodicity of the misfit structure, it is possible to distinguish between the modulation parameters induced by the accommodation of both subsystems and those related to the longitudinal modulation of the Bi-O layers. In this original structure, two independent aperiodic phenomena coexist in an single crystallographic direction. A particular attention has been paid to the structural configuration of the CoO2 layer, in relation with other similar phases. The thermoelectric properties are probably directly related to the specific distortion of the compressed layer, but the different measured values for the Seebeck coefficient cannot be related to a significant modification of the CoO6 octahedra. © 2008 American Chemical Society
    corecore