68 research outputs found

    Modelling Nitrous Oxide Emissions from Grazed Grasslands in New Zealand

    Get PDF
    Spatial and temporal variability are major difficulties when quantifying annual N2O fluxes at the field scale. New Zealand currently relies on the IPCC default methodology (National Inventory Report, 2004). This methodology is too simplistic and generalised as it ignores all site-specific controls, but is also not sufficiently flexible to allow mitigation options to be assessed. Therefore, a more robust, process-based approach is required to quantify N2O emissions more accurately at the field level. Denitrification-decomposition (DNDC) is a process-based model originally developed (Li et al., 1992) to quantify agricultural nitrous oxide (N2O) emissions across climatic zones, soil types, and management regimes. This has been modified to represent New Zealand grazed grassland systems (Saggar et al., 2004). More recent modifications include measured biomass C and N parameters in perennial pasture and compaction impacts on the soil water dynamics. Further validation tests have been conducted against observed soil moisture and gas fluxes. Here we i) assess the ability of a modified DNDC model NZ-DNDC to simulate N2O emissions; ii) compare the measured, modelled and IPCCestimated N2O emissions from dairy- and sheep-grazed pastures; and iii) give preliminary results for upscaling the model to provide preliminary regional emissions estimates

    Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand

    Get PDF
    AbstractBetween 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N2O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain

    Towards a more complete quantification of the global carbon cycle

    Get PDF
    The main components of global carbon budget calculations are the emissions from burning fossil fuels, cement production, and net land-use change, partly balanced by ocean CO2 uptake and CO2 increase in the atmosphere. The difference between these terms is referred to as the residual sink, assumed to correspond to increasing carbon storage in the terrestrial biosphere through physiological plant responses to changing conditions (ΔBphys). It is often used to constrain carbon exchange in global earth-system models. More broadly, it guides expectations of autonomous changes in global carbon stocks in response to climatic changes, including increasing CO2, that may add to, or subtract from, anthropogenic CO2 emissions. However, a budget with only these terms omits some important additional fluxes that are needed to correctly infer ΔBphys. They are cement carbonation and fluxes into increasing pools of plastic, bitumen, harvested-wood products, and landfill deposition after disposal of these products, and carbon fluxes to the oceans via wind erosion and non-CO2 fluxes of the intermediate breakdown products of methane and other volatile organic compounds. While the global budget includes river transport of dissolved inorganic carbon, it omits river transport of dissolved and particulate organic carbon, and the deposition of carbon in inland water bodies. Each one of these terms is relatively small, but together they can constitute important additional fluxes that would significantly reduce the size of the inferred ΔBphys. We estimate here that inclusion of these fluxes would reduce ΔBphys from the currently reported 3.6&thinsp;GtC&thinsp;yr−1 down to about 2.1&thinsp;GtC&thinsp;yr−1 (excluding losses from land-use change). The implicit reduction in the size of ΔBphys has important implications for the inferred magnitude of current-day biospheric net carbon uptake and the consequent potential of future biospheric feedbacks to amplify or negate net anthropogenic CO2 emissions.</p

    Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Get PDF
    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O emissions through denitrification across a wide range of soil types

    Soil-derived Nature’s Contributions to People and their contribution to the UN Sustainable Development Goals

    Get PDF
    Acknowledgments The input of PS contributes to Soils-R-GRREAT (NE/P019455/1) and the input of PS and SK contributes to the European Union's Horizon 2020 Research and Innovation Programme through project CIRCASA (grant agreement no. 774378). PR acknowledges funding from UK Greenhouse Gas Removal Programme (NE/P01982X/2). GB De Deyn acknowledges FoodShot Global for its support. TKA acknowledges the support of “Towards Integrated Nitrogen Management System (INMS) funded by the Global Environment Facility (GEF), executed through the UK’s Natural Environment Research Council (NERC). The input of DG was supported by the New Zealand Ministry of Business, Innovation and Employment (MBIE) strategic science investment fund (SSIF). PMS acknowledges support from the Australian Research Council (Project FT140100610). PM’s work on ecosystem services is supported by a National Science Foundation grant #1853759, “Understanding the Use of Ecosystem Services Concepts in Environmental Policy”. LGC is funded by National Council for Scientific and Technological Development (CNPq, Brazil – grants 421668/2018-0 and 305157/2018-3) and by Lisboa2020 FCT/EU (project 028360). BS acknowledges support from the Lancaster Environment Centre Project.Peer reviewedPostprin

    A comprehensive assessment of anthropogenic and natural sources and sinks of Australasia\u27s carbon budget

    Get PDF
    Regional carbon budget assessments attribute and track changes in carbon sources and sinks and support the development and monitoring the efficacy of climate policies. We present a comprehensive assessment of the natural and anthropogenic carbon (C-CO2) fluxes for Australasia as a whole, as well as for Australia and New Zealand individually, for the period from 2010 to 2019, using two approaches: bottom-up methods that integrate flux estimates from land-surface models, data-driven models, and inventory estimates; and top-down atmospheric inversions based on satellite and in situ measurements. Our bottom-up decadal assessment suggests that Australasia\u27s net carbon balance was close to carbon neutral (−0.4 ± 77.0 TgC yr−1). However, substantial uncertainties remain in this estimate, primarily driven by the large spread between our regional terrestrial biosphere simulations and predictions from global ecosystem models. Within Australasia, Australia was a net source of 38.2 ± 75.8 TgC yr−1, and New Zealand was a net CO2 sink of −38.6 ± 13.4 TgC yr−1. The top-down approach using atmospheric CO2 inversions indicates that fluxes derived from the latest satellite retrievals are consistent within the range of uncertainties with Australia\u27s bottom-up budget. For New Zealand, the best agreement was found with a national scale flux inversion estimate based on in situ measurements, which provide better constrained of fluxes than satellite flux inversions. This study marks an important step toward a more comprehensive understanding of the net CO2 balance in both countries, facilitating the improvement of carbon accounting approaches and strategies to reduce emissions

    Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations

    Get PDF
    Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (N₂O) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of N₂O emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and “gap-filling” approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper
    • 

    corecore