11,487 research outputs found

    Composition of the hot plasma near geosynchronous altitude

    Get PDF
    Although there were no direct measurements of the composition of the hot (keV) plasma at geosynchronous altitudes, the combination of other observations leads to the conclusion that, at least during geomagnetically disturbed periods, there are significant fluxes of ions heavier than protons in this region. Ion composition measurements below 8000 km altitude show upward streaming fluxes of both O(+) and H(+) ions in the L-region of the geosynchronous orbit. These observations are consistent with the conclusion that at least a portion of the total ion fluxes observed at geosynchronous altitude to be highly peaked near the magnetic field lines are heavier than protons and originate in the ionosphere

    Analysis of satellite data on energetic particles of ionospheric origin

    Get PDF
    The morphology was studied of precipitating O(+) and H(+) ions in the energy range 0.7 equal to or less than E equal to or less than 12 keV during the storm-time period from December 16-18, 1971, which encompassed two principal magnetic storms. The results are described with emphasis on the temporal variations of parameters characterizing the intensity, average energy, and spatial location of the zones of precipitation of the two ionic species. One of the principal results was the finding that the intensity of the precipitating O(+) ions was well correlated with the geomagnetic indices which measure the strength of magnetospheric substorm activity and the strength of the storm-time ring current. Since the O(+) ions are almost certainly of ionospheric origin the correlations indicate that a previously unknown strong coupling mechanism existed between the magnetosphere and the ionosphere during the storm period

    Analysis of satellite data on energetic particles of ionospheric origin

    Get PDF
    The principal result of this program has been the completion of a detailed statistical study of the properties of precipitating O(+) and H(+) ions during two principal magnetic storms. The results of the analysis of selected data of ion mass spectrometer experiment on satellites are given with emphasis on the morphology of the O(+) ions of ionospheric origin with energies in the 0.7 les than or equal to E less than or equal to 12 keV range that were discovered with this experiment

    Extreme Precision Antenna Reflector Study Results

    Get PDF
    Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach

    Apollo applications program data archives

    Get PDF
    Apollo applications program data archives to collect, store, retrieve, and distribute experiments-related dat

    ATDRS payload technology research and development

    Get PDF
    Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed
    • …
    corecore