4,345 research outputs found

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    Directed force chain networks and stress response in static granular materials

    Full text link
    A theory of stress fields in two-dimensional granular materials based on directed force chain networks is presented. A general equation for the densities of force chains in different directions is proposed and a complete solution is obtained for a special case in which chains lie along a discrete set of directions. The analysis and results demonstrate the necessity of including nonlinear terms in the equation. A line of nontrivial fixed point solutions is shown to govern the properties of large systems. In the vicinity of a generic fixed point, the response to a localized load shows a crossover from a single, centered peak at intermediate depths to two propagating peaks at large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur

    On the arithmetic of Krull monoids with infinite cyclic class group

    Get PDF
    Let HH be a Krull monoid with infinite cyclic class group GG and let GP⊂GG_P \subset G denote the set of classes containing prime divisors. We study under which conditions on GPG_P some of the main finiteness properties of factorization theory--such as local tameness, the finiteness and rationality of the elasticity, the structure theorem for sets of lengths, the finiteness of the catenary degree, and the existence of monotone and of near monotone chains of factorizations--hold in HH. In many cases, we derive explicit characterizations

    Random tensor models in the large N limit: Uncoloring the colored tensor models

    Full text link
    Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in arbitrary dimensions. Colored tensor models have been shown to admit a 1/N expansion and a continuum limit accessible analytically. In this paper we prove that these results extend to the most general tensor model for a single generic, i.e. non-symmetric, complex tensor. Colors appear in this setting as a canonical book-keeping device and not as a fundamental feature. In the large N limit, we exhibit a set of Virasoro constraints satisfied by the free energy and an infinite family of multicritical behaviors with entropy exponents \gamma_m=1-1/m.Comment: 15 page

    Proton deflectometry analysis in magnetized plasmas: magnetic field reconstruction in one dimension

    Full text link
    Proton deflectometry is increasingly used in magnetized high-energy-density plasmas to observe electromagnetic fields. We describe a reconstruction algorithm to recover the electromagnetic fields from proton fluence data in 1-D. The algorithm is verified against analytic solutions and applied to example data. The virtue of a 1-D algorithm is that it is fast and can be incorporated into higher-level analysis routines and workflows, for example to scan parameters and conduct uncertainty analysis. Furthermore, working through the 1-D algorithm exposes the fundamental importance of boundary conditions and the initial proton fluence profile for an accurate reconstruction. From these considerations we propose a hybrid mesh-fluence reconstruction technique where fields are reconstructed from fluence data in an interior region with boundary conditions supplied by direct mesh measurements at the boundary.Comment: 10 pages, 6 figures. For code library, see: https://github.com/wrfox/PRADICAMEN

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
    • …
    corecore