66,181 research outputs found
Variable geometry aft-fan for takeoff quieting or thrust augmentation of a turbojet engine
A concept is presented that combines the low-noise and high-thrust characteristics of a turbofan at takeoff, together with its high efficiency at subsonic flight speeds, with the high efficiency of a turbojet at supersonic cruise. It consists of a free turbine with tip fan mounted behind the turbine of a conventional turbojet engine. Fan air is supplied from blow-in doors or is ducted from the main engine inlet. At high flight speeds where fan augmentation is not desirable, the fan inlet is closed and the free turbine is stopped by adjustment of its variable-camber stators. Estimates of noise, cycle performance, and example configurations are presented for a typical supersonic transport application
Criticality and Condensation in a Non-Conserving Zero Range Process
The Zero-Range Process, in which particles hop between sites on a lattice
under conserving dynamics, is a prototypical model for studying real-space
condensation. Within this model the system is critical only at the transition
point. Here we consider a non-conserving Zero-Range Process which is shown to
exhibit generic critical phases which exist in a range of creation and
annihilation parameters. The model also exhibits phases characterised by
mesocondensates each of which contains a subextensive number of particles. A
detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
Duality in Shearing Rheology Near the Athermal Jamming Transition
We consider the rheology of soft-core frictionless disks in two dimensions in
the neighborhood of the athermal jamming transition. From numerical simulations
of bidisperse, overdamped, particles, we argue that the divergence of the
viscosity below jamming is characteristic of the hard-core limit, independent
of the particular soft-core interaction. We develop a mapping from soft-core to
hard-core particles that recovers all the critical behavior found in earlier
scaling analyses. Using this mapping we derive a duality relation that gives
the exponent of the non-linear Herschel-Bulkley rheology above jamming in terms
of the exponent of the diverging viscosity below jamming.Comment: 5 pages, 4 figures. Manuscript revisions: new title, additional text
concerning connections to experiment, revised Fig. 4, other minor changes and
clarifications in text. Conclusions remain essentially unchanged. Accepted
for publication in Phys. Rev. Let
An exactly solvable dissipative transport model
We introduce a class of one-dimensional lattice models in which a quantity,
that may be thought of as an energy, is either transported from one site to a
neighbouring one, or locally dissipated. Transport is controlled by a
continuous bias parameter q, which allows us to study symmetric as well as
asymmetric cases. We derive sufficient conditions for the factorization of the
N-body stationary distribution and give an explicit solution for the latter,
before briefly discussing physically relevant situations.Comment: 7 pages, 1 figure, submitted to J. Phys.
Critical phase in non-conserving zero-range processes and equilibrium networks
Zero-range processes, in which particles hop between sites on a lattice, are
closely related to equilibrium networks, in which rewiring of links take place.
Both systems exhibit a condensation transition for appropriate choices of the
dynamical rules. The transition results in a macroscopically occupied site for
zero-range processes and a macroscopically connected node for networks.
Criticality, characterized by a scale-free distribution, is obtained only at
the transition point. This is in contrast with the widespread scale-free
real-life networks. Here we propose a generalization of these models whereby
criticality is obtained throughout an entire phase, and the scale-free
distribution does not depend on any fine-tuned parameter.Comment: 4 pages, 4 figure
Condensation Transitions in a One-Dimensional Zero-Range Process with a Single Defect Site
Condensation occurs in nonequilibrium steady states when a finite fraction of
particles in the system occupies a single lattice site. We study condensation
transitions in a one-dimensional zero-range process with a single defect site.
The system is analysed in the grand canonical and canonical ensembles and the
two are contrasted. Two distinct condensation mechanisms are found in the grand
canonical ensemble. Discrepancies between the infinite and large but finite
systems' particle current versus particle density diagrams are investigated and
an explanation for how the finite current goes above a maximum value predicted
for infinite systems is found in the canonical ensemble.Comment: 18 pages, 4 figures, revtex
Criterion for phase separation in one-dimensional driven systems
A general criterion for the existence of phase separation in driven
one-dimensional systems is proposed. It is suggested that phase separation is
related to the size dependence of the steady-state currents of domains in the
system. A quantitative criterion for the existence of phase separation is
conjectured using a correspondence made between driven diffusive models and
zero-range processes. Several driven diffusive models are discussed in light of
the conjecture
Factorised Steady States in Mass Transport Models
We study a class of mass transport models where mass is transported in a
preferred direction around a one-dimensional periodic lattice and is globally
conserved. The model encompasses both discrete and continuous masses and
parallel and random sequential dynamics and includes models such as the
Zero-range process and Asymmetric random average process as special cases. We
derive a necessary and sufficient condition for the steady state to factorise,
which takes a rather simple form.Comment: 6 page
Genome-wide association study for calving performance using high-density genotypes in dairy and beef cattle
peer-reviewedBackground
Calving difficulty and perinatal mortality are prevalent in modern-day cattle production systems. It is well-established that there is a genetic component to both traits, yet little is known about their underlying genomic architecture, particularly in beef breeds. Therefore, we performed a genome-wide association study using high-density genotypes to elucidate the genomic architecture of these traits and to identify regions of the bovine genome associated with them.
Results
Genomic regions associated with calving difficulty (direct and maternal) and perinatal mortality were detected using two statistical approaches: (1) single-SNP (single nucleotide polymorphism) regression and (2) a Bayesian approach. Data included high-density genotypes on 770 Holstein-Friesian, 927 Charolais and 963 Limousin bulls. Several novel or previously identified genomic regions were detected but associations differed by breed. For example, two genomic associations, one each on chromosomes 18 and 2 explained 2.49 % and 3.13 % of the genetic variance in direct calving difficulty in the Holstein-Friesian and Charolais populations, respectively. Imputed Holstein-Friesian sequence data was used to refine the genomic regions responsible for significant associations. Several candidate genes on chromosome 18 were identified and four highly significant missense variants were detected within three of these genes (SIGLEC12, CTU1, and ZNF615). Nevertheless, only CTU1 contained a missense variant with a putative impact on direct calving difficulty based on SIFT (0.06) and Polyphen (0.95) scores. Using imputed sequence data, we refined a genomic region on chromosome 4 associated with maternal calving difficulty in the Holstein-Friesian population and found the strongest association with an intronic variant in the PCLO gene. A meta-analysis was performed across the three breeds for each calving performance trait to identify common variants associated with these traits in the three breeds. Our results suggest that a portion of the genetic variation in calving performance is common to all three breeds.
Conclusion
The genomic architecture of calving performance is complex and mainly influenced by many polymorphisms of small effect. We identified several associations of moderate effect size but the majority were breed-specific, indicating that breed-specific alleles exist for calving performance or that the linkage phase between genotyped allele and causal mutation varies between breeds
- …