6,998 research outputs found

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    Spherical Formulation for Diagramatic Evaluations on a Manifold with Boundary

    Full text link
    The mathematical formalism necessary for the diagramatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagramatic techniques. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory for which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analyzed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.Comment: 12 pages, references added. To appear in Classical and Quantum Gravit

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes

    Spin entanglement, decoherence and Bohm's EPR paradox

    Get PDF
    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm’s spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies η > 1/3 and η > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons

    Differential equations for multi-loop integrals and two-dimensional kinematics

    Full text link
    In this paper we consider multi-loop integrals appearing in MHV scattering amplitudes of planar N=4 SYM. Through particular differential operators which reduce the loop order by one, we present explicit equations for the two-loop eight-point finite diagrams which relate them to massive hexagons. After the reduction to two-dimensional kinematics, we solve them using symbol technology. The terms invisible to the symbols are found through boundary conditions coming from double soft limits. These equations are valid at all-loop order for double pentaladders and allow to solve iteratively loop integrals given lower-loop information. Comments are made about multi-leg and multi-loop integrals which can appear in this special kinematics. The main motivation of this investigation is to get a deeper understanding of these tools in this configuration, as well as for their application in general four-dimensional kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure

    Perturbative Evaluation of Interacting Scalar Fields on a Curved Manifold with Boundary

    Full text link
    The effects of quantum corrections to a conformally invariant scalar field theory on a curved manifold of positive constant curvature with boundary are considered in the context of a renormalisation procedure. The renormalisation of the theory to second order in the scalar self-coupling pursued herein involves explicit calculations of up to third loop-order and reveals that, in addition to the renormalisation of the scalar self-coupling and scalar field, the removal of all divergences necessitates the introduction of conformally non-invariant counterterms proportional to RΦ2 R\Phi^2 and KΦ2 K\Phi^2 in the bare scalar action as well as counterterms proportional to RK2 RK^2, R2 R^2 and RK RK in the gravitational action. The substantial backreaction effects and their relevance to the renormalisation procedure are analysed.Comment: 25 pages, 1 figure. Minor elucidations in the Appendix regarding the cut-off N0 N_0 and in p.4 regarding the gravitational action. Certain reference-related ommission corrected. To appear in Classical and Quantum Gravit

    Fingering convection and cloudless models for cool brown dwarf atmospheres

    Get PDF
    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.Comment: Accepted in ApJ

    Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate

    Get PDF
    Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures, in direct analogy to the position and momentum correlations originally considered by EPR.Comment: Final published version (corrections in Ref. [32], updated references

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure
    • …
    corecore