25,450 research outputs found
Recommended from our members
The scheduling of sparse matrix-vector multiplication on a massively parallel dap computer
An efficient data structure is presented which supports general unstructured sparse matrix-vector multiplications on a Distributed Array of Processors (DAP). This approach seeks to reduce the inter-processor data movements and organises the operations in batches of massively parallel steps by a heuristic scheduling procedure performed on the host computer.
The resulting data structure is of particular relevance to iterative schemes for solving linear systems. Performance results for matrices taken from well known Linear Programming (LP) test problems are presented and analysed
Infrared properties of SiC particles
We present basic laboratory infrared data on a large number of SiC
particulate samples, which should be of great value for the interpretation of
the 11.3 micron feature observed in the spectra of carbon-rich stars. The
laboratory spectra show a wide variety of the SiC phonon features in the 10-13
micron wavelength range, both in peak wavelength and band shape. The main
parameters determining the band profile are morphological factors as grain size
and shape and, in many cases, impurities in the material. We discovered the
interesting fact that free charge carriers, generated e.g. by nitrogen doping,
are a very common characteristics of many SiC particle samples. These free
charge carriers produce very strong plasmon absorption in the near and middle
infrared, which may also heavily influence the 10-13 micron feature profile via
plasmon-phonon coupling.
We also found that there is no systematic dependence of the band profile on
the crystal type (alpha- vs. beta-SiC). This is proven both experimentally and
by theoretical calculations based on a study of the SiC phonon frequencies.
Further, we give optical constants of amorphous SiC. We discuss the
implications of the new laboratory results for the interpretation of the
spectra of carbon stars.Comment: 17 pages, 12 figures. To appear in A&
Predicting Failure using Conditioning on Damage History: Demonstration on Percolation and Hierarchical Fiber Bundles
We formulate the problem of probabilistic predictions of global failure in
the simplest possible model based on site percolation and on one of the
simplest model of time-dependent rupture, a hierarchical fiber bundle model. We
show that conditioning the predictions on the knowledge of the current degree
of damage (occupancy density or number and size of cracks) and on some
information on the largest cluster improves significantly the prediction
accuracy, in particular by allowing to identify those realizations which have
anomalously low or large clusters (cracks). We quantify the prediction gains
using two measures, the relative specific information gain (which is the
variation of entropy obtained by adding new information) and the
root-mean-square of the prediction errors over a large ensemble of
realizations. The bulk of our simulations have been obtained with the
two-dimensional site percolation model on a lattice of size and hold true for other lattice sizes. For the hierarchical fiber
bundle model, conditioning the measures of damage on the information of the
location and size of the largest crack extends significantly the critical
region and the prediction skills. These examples illustrate how on-going damage
can be used as a revelation of both the realization-dependent pre-existing
heterogeneity and the damage scenario undertaken by each specific sample.Comment: 7 pages + 11 figure
Low latency via redundancy
Low latency is critical for interactive networked applications. But while we
know how to scale systems to increase capacity, reducing latency --- especially
the tail of the latency distribution --- can be much more difficult. In this
paper, we argue that the use of redundancy is an effective way to convert extra
capacity into reduced latency. By initiating redundant operations across
diverse resources and using the first result which completes, redundancy
improves a system's latency even under exceptional conditions. We study the
tradeoff with added system utilization, characterizing the situations in which
replicating all tasks reduces mean latency. We then demonstrate empirically
that replicating all operations can result in significant mean and tail latency
reduction in real-world systems including DNS queries, database servers, and
packet forwarding within networks
Constraining and Dark Energy with Gamma-Ray Bursts
An relationship with a small
scatter for current -ray burst (GRB) data was recently reported, where
is the beaming-corrected -ray energy and
is the peak energy in the local observer frame. By considering this
relationship for a sample of 12 GRBs with known redshift, peak energy, and
break time of afterglow light curves, we constrain the mass density of the
universe and the nature of dark energy. We find that the mass density
(at the confident level) for a flat
universe with a cosmological constant, and the parameter of an assumed
static dark-energy equation of state ().
Our results are consistent with those from type Ia supernovae. A larger sample
established by the upcoming {\em Swift} satellite is expected to provide
further constraints.Comment: 8 pages including 4 figures, to appear in ApJ Letters, typos
correcte
Experimental determination of the degree of quantum polarisation of continuous variable states
We demonstrate excitation-manifold resolved polarisation characterisation of
continuous-variable (CV) quantum states. In contrast to traditional
characterisation of polarisation that is based on the Stokes parameters, we
experimentally determine the Stokes vector of each excitation manifold
separately. Only for states with a given photon number does the methods
coincide. For states with an indeterminate photon number, for example Gaussian
states, the employed method gives a richer and more accurate description. We
apply the method both in theory and in experiment to some common states to
demonstrate its advantages.Comment: 5 page
Conductance calculations for quantum wires and interfaces: mode matching and Green functions
Landauer's formula relates the conductance of a quantum wire or interface to
transmission probabilities. Total transmission probabilities are frequently
calculated using Green function techniques and an expression first derived by
Caroli. Alternatively, partial transmission probabilities can be calculated
from the scattering wave functions that are obtained by matching the wave
functions in the scattering region to the Bloch modes of ideal bulk leads. An
elegant technique for doing this, formulated originally by Ando, is here
generalized to any Hamiltonian that can be represented in tight-binding form. A
more compact expression for the transmission matrix elements is derived and it
is shown how all the Green function results can be derived from the mode
matching technique. We illustrate this for a simple model which can be studied
analytically, and for an Fe|vacuum|Fe tunnel junction which we study using
first-principles calculations.Comment: 14 pages, 5 figure
Astrometry with MCAO: HST-GeMS proper motions in the globular cluster NGC 6681
Aims: for the first time the astrometric capabilities of the Multi-Conjugate
Adaptive Optics (MCAO) facility GeMS with the GSAOI camera on Gemini-South are
tested to quantify the accuracy in determining stellar proper motions in the
Galactic globular cluster NGC 6681. Methods: proper motions from HST/ACS for a
sample of its stars are already available, and this allows us to construct a
distortion-free reference at the epoch of GeMS observations that is used to
measure and correct the temporally changing distortions for each GeMS exposure.
In this way, we are able to compare the corrected GeMS images with a
first-epoch of HST/ACS images to recover the relative proper motion of the
Sagittarius dwarf spheroidal galaxy with respect to NGC 6681. Results: we find
this to be (\mu_{\alpha}cos\delta, \mu_{\delta}) = (4.09,-3.41) mas/yr, which
matches previous HST/ACS measurements with a very good accuracy of 0.03 mas/yr
and with a comparable precision (r.m.s of 0.43 mas/yr). Conclusions: this study
successfully demonstrates that high-quality proper motions can be measured for
quite large fields of view (85 arcsec X 85 arcsec) with MCAO-assisted,
ground-based cameras and provides a first, successful test of the performances
of GeMS on multi-epoch data.Comment: 5 pages, 4 figures. Accepted for publication by A&A Letter
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
Towards Precision Photometry with Extremely Large Telescopes: the Double Subgiant Branch of NGC 1851
The Extremely Large Telescopes currently under construction have a collecting
area that is an order of magnitude larger than the present largest optical
telescopes. For seeing-limited observations the performance will scale as the
collecting area but, with the successful use of adaptive optics, for many
applications it will scale as (where is the diameter of the primary
mirror). Central to the success of the ELTs, therefore, is the successful use
of multi-conjugate adaptive optics (MCAO) that applies a high degree correction
over a field of view larger than the few arcseconds that limits classical
adaptive optics systems. In this letter, we report on the analysis of crowded
field images taken on the central region of the Galactic globular cluster NGC
1851 in band using GeMS at the Gemini South telescope, the only
science-grade MCAO system in operation. We use this cluster as a benchmark to
verify the ability to achieve precise near-infrared photometry by presenting
the deepest photometry in crowded fields ever obtained from the ground.
We construct a colour-magnitude diagram in combination with the F606W band from
HST/ACS. As well as detecting the "knee" in the lower main sequence at
, we also detect the double subgiant branch of NGC 1851, that
demonstrates the high photometric accuracy of GeMS in crowded fields.Comment: Accepted for publication in ApJL (3 Sep 2015). A version of the paper
with high-res images is available at
http://www.astro.uvic.ca/~alan/ms_arxiv_hr.pd
- âŠ