377 research outputs found

    Fast visible imaging of turbulent plasma in TORPEX

    No full text
    Fast framing cameras constitute an important recent diagnostic development aimed at monitoring light emission from magnetically confined plasmas, and are now commonly used to study turbulence in plasmas. In the TORPEX toroidal device [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], low frequency electrostatic fluctuations associated with drift-interchange waves are routinely measured by means of extensive sets of Langmuir probes. A Photron Ultima APX-RS fast framing camera has recently been acquired to complement Langmuir probe measurements, which allows comparing statistical and spectral properties of visible light and electrostatic fluctuations. A direct imaging system has been developed, which allows viewing the light, emitted from microwave-produced plasmas tangentially and perpendicularly to the toroidal direction. The comparison of the probability density function, power spectral density, and autoconditional average of the camera data to those obtained using a multiple head electrostatic probe covering the plasma cross section shows reasonable agreement in the case of perpendicular view and in the plasma region where interchange modes dominate.This work is partly funded by the “Fonds National Suisse de la Recherche Scientifique.

    Current driven rotating kink mode in a plasma column with a non-line-tied free end

    Get PDF
    First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.Comment: 4 pages, 6 figure

    A novel method for validating multi-classifiers. A case study for ICF-based health status classification

    Get PDF
    In this paper, we propose a novel method for the validation of a multi-classification model according to the intended use and aim of a device for health status classification and the clinical needs of the practitioners involved

    Brain CHID1 Expression Correlates with NRGN and CALB1 in Healthy Subjects and AD Patients

    Full text link
    Alzheimer's disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1. The genes of the first two have been extensively investigated while, on the contrary, little information is available on CHID1. In this manuscript, we conducted transcriptome meta-analysis on an extensive sample of brains of healthy control subjects (n = 1849) (NDHC) and brains of AD patients (n = 1170) in order to demonstrate CHID1 involvement. Our analysis revealed an inverse correlation between the brain CHID1 expression levels and the age of NDHC subjects. Significant differences were highlighted comparing CHID1 expression of NDHC subjects and AD patients. Exclusive in AD patients, the CHID1 expression levels were correlated positively to calcium-binding adapter molecule 1 (IBA1) levels. Furthermore, both in NDHC and in AD patient's brains, the CHID1 expression levels were directly correlated with calbindin 1 (CALB1) and neurogranin (NRGN). According to brain regions, correlation differences were shown between the expression levels of CHID1 in prefrontal, frontal, occipital, cerebellum, temporal, and limbic system. Sex-related differences were only highlighted in NDHC. CHID1 represents a new chitinase potentially involved in the principal processes underlying Alzheimer's disease

    Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX

    Full text link
    Suprathermal ions, created by fusion reactions or by additional heating, will play an important role in burning plasmas such as the ones in ITER or DEMO. Basic plasma experiments, with easy access for diagnostics and well-controlled plasma scenarios, are particularly suitable to investigate the transport of suprathermal ions in plasma waves and turbulence. Experimental measurements and numerical simulations have revealed that the transport of fast ions in the presence of electrostatic turbulence in the basic plasma toroidal experiment TORPEX is generally non-classical. Namely, the mean-squared radial displacement of the ions does not scale linearly with time, but 〈r2(t)〉∼tγ , with γ �= 1 generally, γ>1 corresponding to superdiffusion and γ<1 to subdiffusion. A generalization of the classical model of diffusion, the so-called fractional L ́ evy motion, which encompasses power-law (L ́ evy) statistics for the displacements and correlated temporal increments, leads to non-classical dynamics such as that observed in the experiments. On a macroscopic scale, this results in fractional differential operators, which are used to model non-Gaussian, non-local anomalous transport in a growing number of applied fields, including plasma physics. In this paper, we show that asymmetric fractional L ́ evy motion can be described by a diffusion equation using spacefractional differential operator with skewness. Numerical simulations of tracers in TORPEX turbulence are performed. The time evolution of the radial particle position distribution is shown to be described by solutions of the fractional diffusion equation corresponding to asymmetric fractional L ́ evy motion in sub- and superdiffusive cases

    Climate Change and Childhood Respiratory Health: A Call to Action for Paediatricians

    Get PDF
    Climate change (CC) is one of the main contributors to health emergencies worldwide. CC appears to be closely interrelated with air pollution, as some pollutants like carbon dioxide (CO2), nitrogen oxides (NOx) and black carbon are naturally occurring greenhouse gases. Air pollution may enhance the allergenicity of some plants and, also, has an adverse effect on respiratory health. Children are a uniquely vulnerable group that suffers disproportionately from CC burden. The increasing global warming related to CC has a big impact on plants' lifecycles, with earlier and longer pollen seasons, as well as higher pollen production, putting children affected by asthma and allergic rhinitis at risk for exacerbations. Extreme weather events may play a role too, not only in the exacerbations of allergic respiratory diseases but, also, in favouring respiratory infections. Even though paediatricians are already seeing the impacts of CC on their patients, their knowledge about CC-related health outcomes with specific regards to children's respiratory health is incomplete. This advocates for paediatricians' increased awareness and a better understanding of the CC impact on children's respiratory health. Having a special responsibility for children, paediatricians should actively be involved in policies aimed to protect the next generation from CC-related adverse health effects. Hence, there is an urgent need for them to take action and successfully educate families about CC issues. This paper aims at reviewing the evidence of CC-related environmental factors such as temperature, humidity, rainfall and extreme events on respiratory allergic diseases and respiratory infections in children and proposing specific actionable items for paediatricians to deal with CC-related health issues in their clinical practice

    Nanofat 2.0: experimental evidence for a fat grafting rich in mesenchymal stem cells.

    Get PDF
    Different strategies have been developed in the last decade to obtain fat grafts as rich as possible of mesenchymal stem cells, so exploiting their regenerative potential. Recently, a new kind of fat grafting, called "nanofat", has been obtained after several steps of fat emulsification and filtration. The final liquid suspension, virtually devoid of mature adipocytes, would improve tissue repair because of the presence of adipose mesenchymal stem cells (ASCs). However, since it is probable that many ASCs may be lost in the numerous phases of this procedure, we describe here a novel version of fat grafting, which we call "nanofat 2.0", likely richer in ASCs, obtained avoiding the final phases of the nanofat protocol. The viability, the density and proliferation rate of ASCs in nanofat 2.0 sample were compared with samples of nanofat and simple lipoaspirate. Although the density of ASCs was initially higher in lipoaspirate sample, the higher proliferation rate of cells in nanofat 2.0 virtually filled the gap within 8 days. By contrast, the density of ASCs in nanofat sample was the poorest at any time. Results show that nanofat 2.0 emulsion is considerably rich in stem cells, featuring a marked proliferation capability
    corecore