11,554 research outputs found
Using real-time recognition of human-robot interaction styles for creating adaptive robot behaviour in robot-assisted play
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ALIFE.2009.4937693This paper presents an application of the Cascaded Information Bottleneck Method for real-time recognition of Human-Robot Interaction styles in robot-assisted play. This method, that we have developed, is implemented here for an adaptive robot that can recognize and adapt to children's play styles in real time. The robot rewards well-balanced interaction styles and encourages children to engage in the interaction. The potential impact of such an adaptive robot in robot-assisted play for children with autism is evaluated through a study conducted with seven children with autism in a school. A statistical analysis of the results shows the positive impact of such an adaptive robot on the children's play styles and on their engagement in the interaction with the robot
Towards socially adaptive robots : A novel method for real time recognition of human-robot interaction styles
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ICHR.2008.4756004Automatically detecting different styles of play in human-robot interaction is a key challenge towards adaptive robots, i.e. robots that are able to regulate the interactions and adapt to different interaction styles of the robot users. In this paper we present a novel algorithm for pattern recognition in human-robot interaction, the Cascaded Information Bottleneck Method. We apply it to real-time autonomous recognition of human-robot interaction styles. This method uses an information theoretic approach and enables to progressively extract relevant information from time series. It relies on a cascade of bottlenecks, the bottlenecks being trained one after the other according to the existing Agglomerative Information Bottleneck Algorithm. We show that a structure for the bottleneck states along the cascade emerges and we introduce a measure to extrapolate unseen data. We apply this method to real-time recognition of Human-Robot Interaction Styles by a robot in a detailed case study. The algorithm has been implemented for real interactions between humans and a real robot. We demonstrate that the algorithm, which is designed to operate real time, is capable of classifying interaction styles, with a good accuracy and a very acceptable delay. Our future work will evaluate this method in scenarios on robot-assisted therapy for children with autism.Peer reviewe
Electronic dynamics and frequency-dependent effects in circularly polarized strong-field physics
We analyze, quantum mechanically, the dynamics of ionization with a strong,
circularly polarized, laser field. We show that the main source for
non-adiabatic effects is connected to an effective barrier lowering due to the
laser frequency. Such non-adiabatic effects manifest themselves through
ionization rates and yields that depart up to more than one order of magnitude
from a static-field configuration. Beyond circular polarization, these results
show the limits of standard instantaneous - static-field like - interpretation
of laser-matter interaction and the great need for including time dependent
electronic dynamics
Photocurrents in nanotube junctions
Photocurrents in nanotube p-n junctions are calculated using a
non-equilibrium Green function quantum transport formalism. The short-circuit
photocurrent displays band-to-band transitions and photon-assisted tunneling,
and has multiple sharp peaks in the infrared, visible, and ultraviolet ranges.
The operation of such devices in the nanoscale regime leads to unusual size
effects, where the photocurrent scales linearly and oscillates with device
length. The oscillations can be related to the density of states in the valence
band, a factor that also determines the relative magnitude of the photoresponse
for different bands.Comment: 5 pages, 4 figures, submitte
First-Passage Time and Large-Deviation Analysis for Erasure Channels with Memory
This article considers the performance of digital communication systems
transmitting messages over finite-state erasure channels with memory.
Information bits are protected from channel erasures using error-correcting
codes; successful receptions of codewords are acknowledged at the source
through instantaneous feedback. The primary focus of this research is on
delay-sensitive applications, codes with finite block lengths and, necessarily,
non-vanishing probabilities of decoding failure. The contribution of this
article is twofold. A methodology to compute the distribution of the time
required to empty a buffer is introduced. Based on this distribution, the mean
hitting time to an empty queue and delay-violation probabilities for specific
thresholds can be computed explicitly. The proposed techniques apply to
situations where the transmit buffer contains a predetermined number of
information bits at the onset of the data transfer. Furthermore, as additional
performance criteria, large deviation principles are obtained for the empirical
mean service time and the average packet-transmission time associated with the
communication process. This rigorous framework yields a pragmatic methodology
to select code rate and block length for the communication unit as functions of
the service requirements. Examples motivated by practical systems are provided
to further illustrate the applicability of these techniques.Comment: To appear in IEEE Transactions on Information Theor
Conduction mechanism and magnetotransport in multi-walled carbon nanotubes
We report on a numerical study of quantum diffusion over micron lengths in
defect-free multi-walled nanotubes. The intershell coupling allows the electron
spreading over several shells, and when their periodicities along the nanotube
axis are incommensurate, which is likely in real materials, the electronic
propagation is shown to be non ballistic. This results in magnetotransport
properties which are exceptional for a disorder free system, and provides a new
scenario to understand the experiments (A. Bachtold et al. Nature 397, 673
(1999)).Comment: 4 page
- …