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Abstract— This paper presents an application of the Cas-
caded Information Bottleneck Method for real-time recognition
of Human-Robot Interaction styles in robot-assisted play. This
method, that we have developed, is implemented here for an
adaptive robot that can recognize and adapt to children’s play
styles in real time. The robot rewards well-balanced interaction
styles and encourages children to engage in the interaction. The
potential impact of such an adaptive robot in robot-assisted play
for children with autism is evaluated through a study conducted
with seven children with autism in a school. A statistical analysis
of the results shows the positive impact of such an adaptive
robot on the children’s play styles and on their engagement in
the interaction with the robot.

I. INTRODUCTION

The work presented in this paper is part of the Aurora

project, an ongoing long-term project investigating the poten-

tial use of robots to help children with autism overcome some

of their impairments in communication, social interaction

and imagination and fantasy1. Children with autism are able

to play but the nature of their play may be described as

restricted. Indeed, according to the American Psychiatric

Association, “a lack of varied, spontaneous make-believe

play is a defining feature of autism” [4]. Children with

autism often play in a repetitive way, which can be linked to

the children’s preference for predictable environments. The

advantage of enabling children with autism to interact with

a robot is that robots enable simple and safe interaction by

initially providing a relatively predictable environment for

play. Progressively the complexity of the interaction can be

increased.

Different possible obstacles have been identified that often

prevent children with autism to actualize their potential for

play. Among them are impairments in socioemotional inter-

subjectivity, impairment in joint attention and impairment in

Theory of Mind [5]. These impairments negatively influence
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1Autistic Spectrum Disorders can appear at various degrees and refer to
different skills and abilities [1; 2]. Communication, social interaction and
imagination and fantasy have been identified as the main impairments in
autism, [3].

interaction in general and, more specifically, imply a lack

of spontaneous and social reciprocity during play. Besides,

the difficulty in perceiving the coherence of categories and

concepts can be a reason why children with autism perceive

an object in its parts and not as a whole, compare the weak

central coherence theory [6; 7] for details. However, causes

for impaired play are still not very well understood. These

causes can vary for different children, depending also on the

personality of the child and her past experience of play.

Yet play is an important vehicle for learning. Children

can construct some understanding, i.e. active construction

of meaning, through play. Besides, children usually enjoy

playing (though this might not be the case in autism).

Their pleasure and motivation seem to increase when they

have the impression that they master a play situation [8].

Consequently, if we try to help children with autism master

situations of play, they may have more fun playing which

may contribute, even very modestly, to their quality of life.

Play is also an important medium for self-expression [8].

Consequently, here we focus on facilitating play between

children with autism and an autonomous robot, and particu-

larly, we investigate the potential of a robot that can detect

the children’s play styles and adapt to them accordingly (such

a robot is called an ‘adaptive robot’ in contrast to a ‘reactive

robot’ which would only respond to current sensory input).

Our goal is to encourage the children to engage in play and,

when playing, to encourage ‘well balanced’ tactile interaction

styles, i.e. neither too forceful nor too weak and within an

intermediate frequency of interaction. We therefore address

the following research questions:

• Does the adaptive robot, as described above, encourage

or discourage the children from engaging in the inter-

action with the robot? Does their engagement change

when interacting with a reactive robot?

• Does a child’s play patterns differ when the robot is

adaptive from when the robot is reactive? This question

contains two subquestions as follows: i) Are the tac-

tile strokes qualitatively different (ideally more gentle)

when the child plays with an adaptive robot? ii) Is the

frequency of the interaction differently (ideally better)

balanced when the child plays with the adaptive robot?

In order to study these research questions, a hard technical

challenge needs to be addressed, namely how to enable the

robot to recognize in real time the tactile play styles of

a child. This has been achieved by applying the Cascaded

Information Bottleneck Method, a method that we developed

and that is capable of extracting the temporal information of
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a signal such as a time series of sensor data. We introduced

it in a previous paper [9]. This method was developed as an

extension of the well-known Information Bottleneck Method

to the analysis of time series [10]. Section 3 briefly explains

the method and provides details on its implementation for

the recognition of human-robot interaction styles. We then

report on trials conducted in a school with seven children

with autism which evaluated the potential impact of such an

adaptive robot on the children’s play styles.

II. RELATED WORK

Related work in robot-assisted play for children with

autism has shown that when playing with a robot (in contrast

to a stuffed animal), children with autism tend to show more

behaviours that are typically impaired in autism (e.g. eye

contact) [11]. Earlier comparisons between a mobile robot

and a toy truck have shown more engaging behaviour towards

the autonomous robot [12; 13]. Moreover other studies

highlighted the potential role of the robot as a social mediator

for children with autism [14; 15; 16]. Most studies were

conducted in task oriented settings, e.g. involving imitation

[16] or chasing games [15] with reactive (remotely controlled

or autonomous) robots. Besides, the role of the experimenter

in robot-assisted play has been investigated, firstly by Robins

et al. [17] and more recently by François et al. [18].

The current paper focuses on investigating the role of an

adaptive robot in robot-assisted play. We investigate whether

an adaptive robot, i.e. a robot that could adapt to each child’s

play styles in real time would have a positive effect on the

children’s play styles and guide them progressively towards

more well balanced interaction styles.

III. THE CASCADED INFORMATION BOTTLENECK

METHOD

A. Background: The Information Bottleneck Method

The Information Bottleneck Method [10] is a clustering

method based on an information theoretic approach whose

purpose is to extract the relevant information2 in a signal

x ∈ X that is, extract features of a random variable (r.v.)

X that are relevant to the prediction of Y . This problem is

modeled by the following Bayesian network with Markov

condition: X̃ ←− X ←− Y where X̃ is the variable that

extracts information about Y through X .

This popular method provides an alternative to ‘rate

distortion theory’ techniques which constitute a standard

approach to lossy source compression. In the Information

Bottleneck method, the relevance is not addressed through an

external distortion measure but directly through a variational

principle implementing an information-theoretic formulation

of sufficient statistics. The rationale is that the best trade-off

between the compression of the signal and the preservation of

the relevant information is the one that keeps a fixed amount

of relevant information about the relevant signal Y while

2In this context, the relevant information is defined as the information
that the (accessible) signal x ∈ X provides about another (typically not
directly accessible) signal y ∈ Y .

minimizing the number of bits from the accessible signal X ,

i.e. maximizing the compression. The optimal assignment

can be found by minimizing the functional

L[p(x̃|x)] = I(X̃; X) − βI(X̃; Y ) (1)

I(X;Y ) stands for the mutual information between X and

Y. For β and the cardinality of X̃ fixed, an expression can

be given which specifies implicitly the solution and leads to

a fixed-point iteration. For the information bottleneck set-

ting, the Kullback-Leibler divergence DKL(p(y|x)||p(y|x̃))
replaces the distortion function from conventional rate-

distortion theory.

The Agglomerative Information Bottleneck algorithm [19]

makes the assumption that β tends to ∞ in the Lagrangian

equation (Eq. 1). In this specific setting, the mutual informa-

tion between X̃ and Y is maximized and a hard partition of

the data into subsets is induced, each subset corresponding to

a bottleneck state x̃: for a fixed cardinality of X̃ (i.e. a fixed

number of subsets - also called states - in the bottleneck),

each member of the input signal x ∈ X belongs to one and

only one subset x̃ ∈ X̃ and x̃ is the subset for which p(y|x̃)
has the smallest DKL(p(y|x)||p(y|x̃)). The hard partition can

be softened afterwards, with reverse annealing.

B. The Cascaded Information Bottleneck Method

1) The principle: Based on the Information Bottleneck

Method, we have developed a novel time-filtering method

particularly adapted for pattern recognition in time series.

Let x ∈ X be a time series input signal of length l, x =
[x0, ..., xl−1]. We take k and S ∈ N, with l = k ∗ S, such

that x can be divided into S disjoint sequences Xs, s =

0, ..., (S − 1), each of cardinality k, in the following way:

x0 ... xk−1 xk ... x2k−1 ... xk∗S−1

X0 X1

The Cascaded Information Bottleneck method relies on the

principle that the relevant information can be progressively

extracted from the time series with a cascade of successive

bottlenecks sharing the same cardinality of bottleneck states

but trained successively. The agglomerative information bot-

tleneck algorithm is applied to each bottleneck successively,

the first one being trained in the standard way while the

next ones depend on the previous bottleneck states, as the

following graph shows:

X̃S−1
...X̃2X̃1X̃0

XS−1...X2X1X0

Y

2) Extrapolation: The Cascaded Information Bottleneck

Method progressively extracts the relevant information from

an input sample X = [X0, ..., XS−1] by a recall on the
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successive components (X0 for the first step of the cascade,

(X̃s−1, Xs) for step s > 0). Each bottleneck (we now

discuss only s > 0, without loss of generality) is charac-

terized by a probabilistic mapping p(x̃s|(x̃s−1, xs)) which,

for the present work using the agglomerative information

bottleneck algorithm, is hard, i.e. above probability is 1 for

exactly one value x̃s of X̃s and vanishes otherwise, i.e. it

implements a hard mapping (x̃s−1, xs) 7→ x̃s (note that the

input (x̃s−1, xs) corresponds to the input x of the original

information bottleneck method).

During the information bottleneck training process, for

each step of the cascade successively (s > 0), the mapping

(x̃s−1, xs) 7→ x̃s is built. If, however, at a step s in the

cascade a pair (x̃s−1, xs) never occurs during the training

(we call this an unseen pair), the mapping (x̃s−1, xs) 7→
x̃s will not be defined for the completed cascade. Upon

processing of novel data, however, such a pair may be

observed and in this case the cascade has no way to infer

the following bottleneck state x̃s, since there is no natural

a priori correspondence of bottleneck states in successive

bottlenecks.

For such cases, we therefore introduce an identification

of successive bottleneck states which will provide us with a

“default” continuation of a bottleneck state from step s− 1
to step s in the case of unseen pairs. Let X̃s−1 and X̃s be

the set of bottleneck states x̃s−1 and x̃s, as well as p(x̃s−1)
and p(x̃s) their empirical probabilities. We consider one-to-

one mappings r from X̃s−1 to X̃s (which, for convenience,

we call permutations). Each such permutation r provides an

identification of successive bottleneck states. We define the

informational cost of a permutation as

d(s−1,s)(r) = −
∑

x̃s−1∈X̃s−1

p(x̃s−1) log p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1)

(2)

Note that p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1) is, for a given

permutation r, the probability that the next state is r(x̃s−1)
knowing that the current state is x̃s−1. The logarithm mea-

sures the unpredictability of the next state (i.e. the unpre-

dictability of X̃s given x̃s−1). If p̃(X̃s = r(x̃s−1)|X̃s−1 =

x̃s−1) = 0 then, by convention, d(s−1,s)(r) is ∞.

To define a “default” continuation we now choose a permuta-

tion R(s−1, s) that minimizes that unpredictability, weighted

by the probability that the state x̃s−1 actually occurs. Note

that per construction of the bottleneck cascade, one never has

p(x̃s−1) = 0.

R(s − 1, s) = arg min rd(s−1,s)(r) (3)

R(s−1, s) defines now a “default” path between X̃s−1 and

X̃s, and thus provides an extrapolation of the succeeding

bottleneck state in the case of an unseen pair.

3) Implementation: The Cascaded Information Bottleneck

Method has been evaluated with two different criteria of

interaction, namely the gentleness and the frequency of the

interaction in [9]. The criterion gentleness contains two

classes, namely ‘gentle’ and ‘strong’ which correspond re-

spectively to non-forceful and forceful tactile interaction. The

frequency of the interaction is categorised into four classes,

defined by their typical periodicity of interaction: i) very low

(S0): the elapsed time between two tactile interactions is

greater than 15 seconds; ii) middle inferior (S1): the elapsed

time between two tactile interactions is lower or equal to 15
seconds and greater than 5 seconds; iii) middle superior (S2):

the elapsed time between two tactile interactions is lower

or equal to 5 seconds and greater than 1 second; iv) very

high (S3): the elapsed time between two tactile interactions

is lower or equal to 1 second. S1 and S2 are considered

here as well-balanced frequencies of interaction, while S0

corresponds to a rare interaction and S3 to a very intense

interaction.

Two different cascades were built independently, one for

each criterion of interaction. The gentleness corresponds to a

short-term time scale event while the frequency corresponds

to a mid-term time scale event (see Fig. 1 which provides the

parameters for each cascade). The samples for the training

of each cascade were generated during interactions with

the Aibo ERS-7 in laboratory conditions within different

runs. Each run contained one class exclusively, i.e. for the

criterion gentleness, the samples generated within a same run

contained only gentle or only strong styles of interaction (i.e.

only gentle or only strong strokes were generated during a

same run), and for the criterion frequency of the interaction,

the samples generated within a same run contained only one

type of frequency (i.e. S0, S1, S2 or S3 exclusively).

Criteria Classes Length of the input vector 

(window size), l

Length of the 

individual 

subsequences, k

Length of the 

cascade, S

Number of 

bottleneck 

states, m

Gentleness 2 classes: 

gentle/strong 

50 
(equivalent to 1.6 seconds) 

2 25 4 

Frequency 4 classes: 
S0, S1, S2, S3

472 
(equivalent to 15.1 seconds) 

2 236 6 

Fig. 1. Parameters for each cascade of bottlenecks.

In both cases, a sliding window proceeds on the sensor

data time series. For the criterion ‘gentleness’, the algorithm

does not learn null samples (i.e. samples made of null events

only). For the frequency of interaction, the system deals only

with samples whose first component is not null.

The postprocessing relies on a ‘winner takes all’

principle: The selected (winner state) is defined by

arg maxy∈Y p(y|x̃S−1).
The method shows a sound recognition for both short-

term and mid-term time scale events and involves only a

very short delay for the recognition of short-term time scale

events (0.17 seconds on average) [9]. Besides, the training

process enables a structure to emerge over the cascade

since the conditional entropy between the bottleneck states

of two successive bottlenecks is globally decreasing over

the cascade (Fig. 2). The Cascaded Information Bottleneck

method is transparent and enables control over how much and

what new information is taken at which step of the cascade.

In particular, the extrapolation process enables to control the

degrees of freedom of the system and prevent the cascade

from over-learning.

In the next section, we present an application of the
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Fig. 2. Conditional entropy H(X̃s+1|X̃s). H(X̃s+1|X̃s) globally decreases

over the cascade, pretty quickly, which suggests that a structure is progressively and

rapidly emerging over the cascade: at the beginning of the cascade, a lot of new

information is needed to deduce the next bottleneck state and then, when progressing

in the cascade, less and less new information is needed. However, for the frequency

of interaction, H(X̃s+1|X̃s) has some small local peaks, both at the very beginning

of the cascade and at the very end which suggest that at these steps s, the input data

Xs may influence a bit more in the choice of next equivalent state X̃s+1. Note

that the ones at the end of the cascade may reflect the importance of the last steps

for distinguishing the classes S0 and S1. In the rest of the study, the algorithm will

extrapolate between step 5 and 24 (respectively 5 and 216) of the cascade for the

gentleness (respectively frequency).

Cascaded Information Bottleneck method for Robot-Assisted

Play whereby the method is used to enable a robot to

recognize in real time human-robot interaction styles and

adapt to them accordingly. In this application the criteria of

interaction detected are the gentleness and the frequency of

the interaction and the cascades are the ones described in the

previous paragraph (and detailed in [9]).

IV. APPLICATION: A REAL-TIME ADAPTIVE ROBOT FOR

ROBOT-ASSISTED PLAY

A. The adaptive robot

In the context of this paper, a robot that is ‘adaptive’

can recognize interaction styles in real time and adapt to

them appropriately. In other words, an adaptive robot reacts

differently depending both on i) which sensor(s) is (are)

activated (e.g. head sensor) and ii) the styles of interaction

recognised. In contrast, by ‘reactive’ robot, we refer to a

robot that can only react differently depending on which

sensor is activated (e.g. head sensor or back sensor front),

and which will not change its behaviour according to the

interaction styles.

1) Reward of well balanced interaction styles: The adap-

tive mode relies on a reward basis for well-balanced in-

teraction styles: the child should get a positive feedback

from the robot when he/she plays in an appropriate style of

interaction. The idea behind is that the child should always

be encouraged and rewarded for every progress he/she made.

With this approach, we hope to comfort the child in gaining

self-confidence, enjoying himself/herself, and progressively

acquiring a better understanding of the interactions he/she

is involved in. It is hoped that the rewarding process can

indirectly play the role of a trigger: the child wants to get the

reward and therefore changes his/her behaviour until he/she

actually gets it. Concretely, the robot should help regulate the

interaction: if the child plays in a well-balanced interaction

style, the robot reacts appropriately to the stimulation; on

the contrary, if the interaction is e.g. too strong, the robot

does not show any reaction. Moreover, the child should be

encouraged to engage in the interaction if he/she is not

engaged. Therefore, the robot should be both rewarding and

engaging.

The reward is a physical reaction of the robot, which

can be a gesture, a movement, a light or a sound. The

concrete instantiation of these behaviours has been designed

by immersion for each child beforehand during long-term

studies with each child, whereby the experimenter tested

different robot behaviours with each child in order to evaluate

1) whether the specific child liked it or not, 2) whether he/she

conferred a specific meaning to the reaction and, particularly,

whether the reaction had, in his/her view, a connotation of

the robot being happy or sad.

We shall now detail the notion of reward: each time the

child activates a sensor, the robot evaluates the interaction

style in terms of gentleness and in terms of frequency and

gives a reward, separately according to each criterion. If

the interaction is gentle, then the robot shows a reaction

to the child. The reaction depends on the sensor activated

(there is a deterministic mapping between the sensors and

the reactions of the robot for each child). If the stimulation

takes place in a good overall frequency of interaction, i.e. a

well-balanced frequency of interaction, then two LEDs turn

on on the robot’s face (which is sometimes interpreted by

the children as the ‘robot’s eyes’). Note that a well-balanced

frequency of interaction is a frequency not too low and not

too high, represented in this study by the classes S1 and S2.

Note, this model is generic and can be applied with different

criteria of interactions. Fig. 3 presents the reward schema for

the two criteria (gentleness and frequency) considered here.

Reward for Gentle 

 +  

Reward for well-balanced 

Frequency 

Engaging, proactive 

Reward for Gentle 

Reward for Gentle 

Reward for Gentle 

 +  

Reward for well-balanced 

Frequency 

No interaction 

No interaction 

S0 

S1 

S2 

S3 

GENTLE STRONG

No Reward 

No Reward 

No Reward 

No Reward 

Gentleness 

Frequency 

Fig. 3. Reward Schema for the two criteria of interaction.

2) Architecture for Decision-Making Based on Interaction

Styles: The real-time recognition of the interaction styles

uses the Cascaded Information Bottleneck Method. The small

delay involved in the recognition process is modeled by

a pause in the decision-making process, that is a small

latency (600ms) during which the algorithm ignores the
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current interaction style. After the pause, the decision-making

process looks at the successive classifications that are made

by the Cascaded Information Bottleneck algorithm during

a fixed short amount of time and counts the occurrences of

strong behaviours recognised. If it exceeds a fixed predefined

threshold then the final choice (i.e. the decision) is that the

child’s behaviour towards the robot is recognized as a ‘strong

interaction style’ and the child will not get a reaction from

the robot to his/her stimulation. If below threshold, then

the decision ‘gentle interaction style’ is made and the child

gets the reaction from the robot corresponding to the sensor

activated. Besides, the robot updates the criterion frequency

of interaction with a 1 second periodicity according to the

Cascaded Information Bottleneck method (different threads

for the gentleness and the frequency of interaction running

in parallel). If, when the child strokes the robot gently, the

current frequency of interaction is S1 or S2, then the child

will get the additional reward of the two lights illuminating

on the robot’s face, while the robot also shows the specific

reaction correlated to the gentle stimulation3.

As for the evaluation of the child’s disengagement, we

consider that the child should be encouraged to play with the

robot if he/she has not stroked the robot for a specific time

that we define here as just above 15 seconds (more exactly,

the length of the window size for classifying the frequency

of the interaction which is 472 × 32 ms) which is reflected

by a null input vector for the frequency of the interaction.

B. Trials

1) Participants: Seven children with autism participated

in the experiments which took place in a school for moderate

learning difficulties in UK. The children had had the chance

to play with the robot during several months beforehand

and were familiar with both the robot and the experimenter.

The study was carried out with approval of the University

of Hertfordshire Ethics Committee. The parents of all the

children who took part in this study gave written consent,

including permission to videotape the children.

2) Artifact: The robot was the Aibo ERS-7. It behaved

autonomously and operated either in adaptive or reactive

mode. In both cases the mapping between the sensors and the

robot’s reactions was the same except from the LEDs flashing

for a good frequency of interaction, which was an additional

feature for the adaptive robot, as well as wagging the tail

when no interaction was detected. The behaviour mapping

used for this specific study is detailed in Fig. 4.

3) Procedures and Measures:

Procedures: Each child participated in two sessions and

the experiments involved one child at a time. Each session

consisted of three successive steps4 (also called games or

runs), each step being defined by the mode of the robot–

3Note that this decision-making process really reflects the variety of the
interaction styles considered here, the criterion ‘gentle/strong’ corresponding
to a short-term time scale event and the criterion ‘frequency of the
interaction’ corresponding to a mid-term time scale event.

4A session resulted in three steps also called games, which are, succes-
sively, step 1 (game 1), step 2 (game 2) and step 3 (game 3).

Sensor Corresponding behaviour 

Chin sensor Emit “bark” sound while opening-closing the mouth 

Head sensor Turn head (Head tilt) 

Back front sensor - Wag the tail (used for Child E) 

- Walk forward, turn right, stand, turn left, walk backwards 

(used for the other children) 

Back middle sensor Turn head (Head pan) 

Back rear sensor Emit “drum” sound while wagging the tail  

Fig. 4. Mapping between the external tactile sensors of the robot and its
behaviours. For child E, the walking has been removed and replaced by the robot’s

wagging of the tail as part of the design by immersion.

reactive (R) or adaptive (A)– which alternated between two

successive steps.

As a result, a session was defined by its setting which was

either A-R-A or R-A-R. Each child experimented with both

settings (each during a different session, see Fig. 5).

Child Setting 1 Setting 2 

Child A A-R-A R-A-R 

Child G R-A-R A-R-A 

Child H A-R-A R-A-R 

Child C R-A-R A-R-A 

Child E R-A-R A-R-A 

Child F A-R-A R-A-R 

Child D R-A-R A-R-A 

Fig. 5. Settings for the different children. Setting 1 corresponds to session 1

and setting 2 corresponds to session 2.

The robot’s ‘mode’ was signaled to the child by a sticker

with a specific geometrical form drawn on it (a triangle for

adaptive and a circle for reactive mode); the sticker was put

on the back of the robot at the beginning of each step. At each

step, the child was told which game he/she was now playing,

i.e. game 1 for step 1, game 2 for step 2 and game 3 for step

3. The child could see the experimenter putting the sticker

on the back of the robot. The different stickers were used so

that it was not too hard for the child to understand that the

game was different (this procedure was considered to help

the children cope with different experimental conditions). But

the child had no information about the existence of adaptive

and reactive modes; he/she could only possibly observe the

difference in the reactions of the robot.

During each game, the child could freely interact with the

robot. Before the start of each game, the experimenter:

1) paused the algorithm (for game 2 and 3),

2) congratulated the child and told him/her that now he/she

would move on to game 2 (respectively 3),

3) put the corresponding sticker on,

4) sent the ‘new robot’s mode’ through a wireless connec-

tion to the robot,

5) resumed the algorithm for the detection of play styles

with the new robot’s mode.

Each game lasted several minutes (depending on the

children’s specific needs and abilities); the minimum duration

of each step was approximately 3 minutes. The experimenter

did not touch the robot during the trials, except for putting

on the sticker at the beginning of each step (sensor data were
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not collected at this stage), neither did she try to influence the

child’s behaviour in any way. The experimenter did not take

part in the child-robot interactions in order not to interfere

with the purpose of this study which had to focus on dyadic,

uninterrupted interactions between the child and the robot, in

order to test the potential of an adaptive robot to influence

children’s play styles.

Measures: The experiments were video recorded. The

sensor data and the interaction styles detected with respect

to the gentleness and the frequency of the interaction were

recorded. These data were then analysed quantitatively off-

line. For the criterion gentle/strong, we actually looked at

the overall proportion of the sensor’s activation and at the

ratio of strong interaction styles. For the criterion ‘frequency

of the interaction’, we took into account its evolution over

time, which means here that we looked at the whole set of

classifications, that is every 32 ms. We then used statistical

techniques for non-parametric statistics.

C. Results

1) Statistical analysis of the engagement in the interaction

and the gentleness of the strokes:

Box & Whisker Plot
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Fig. 6. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for the sensors’ activation on the two modes. The x-axis represents the two

modes; the y-axis represents the repartition in percentage of the sensors’s activation.
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Fig. 7. Graph showing the relative engagement of the children in adaptive
and reactive modes.

Engagement in the interaction: In order to study

whether the adaptive robot may have a positive impact on

the engagement of the children in play we do not consider

the specificity of the strokes, i.e. whether they are gentle or

strong. Instead, for each child we are interested in the total

number of sensors’ activations that we compare for adaptive

and reactive robot modes.

For each child and for each mode, we count the total

number of times the sensors were activated (each sensor5

activated counts as one activation), namely, N(Reactive),
for the reactive mode, and N(Adaptive), for the adaptive

mode; for each child, we analyse the relative ratio of each

mode6, as follows:

r(Reactive) = N(Reactive)
N(Reactive)+N(Adaptive)

r(Adaptive) = N(Adaptive)
N(Reactive)+N(Adaptive)

The Wilcoxon test [20] is applied to the data from

the seven children for the two following variables

(Fig 7): r(Adaptive), representing the adaptive mode, and

r(Reactive), representing the reactive mode. The test shows

that there is a significant effect of the experimental conditions

adaptive versus reactive (for T = 1.000, p < 0.028,

with N = 7, Fig. 6). Thus, we can conclude that the

children engage significantly more in the interaction during

the adaptive mode..

Gentleness of the interaction: Here, we study the nature

of the activation in terms of gentleness, i.e. whether an

activation is gentle or strong. We therefore consider the

percentage of strong strokes (also called strong activations)

among the total number of sensor activations, per run and per

child. For each child and for each mode, we take the average

of this percentage over the runs from the two sessions7

(Fig. 8).

Child 
Average percentage of strong 

activations in the adaptive mode 
Average percentage of strong 

activations in the reactive mode 

Child A 20.52 71.97

Child G 2.08 12.50

Child H 5.56 9.09

Child C 3.53 11.75

Child E 15.23 15.79

Child F 17.51 67.74

Child D 60.58 33.33

Fig. 8. Table providing the average percentage of strong strokes in each
mode for each child.

The Wilcoxon test is applied to the data from the seven

children for the two following variables (Fig 8): the average

of the percentage of strong strokes in the adaptive mode

and the average of the percentage of strong strokes in the

reactive mode. The test shows that there is no significant

effect of the experimental conditions on the gentleness of the

strokes (N = 7 and, for T = 5.00, on gets p < 0.128): there

is no significant difference in the amplitude of the average

5Here we look at the activation of any of the four continuous external
sensors, i.e. the head sensor and the three back sensors.

6Some children will naturally interact a lot with the robot, while others
may stroke the robot only a few time during a session, thus we prefer to
look at relative ratios.

7Here we consider the ratio of strong activations and investigate whether
this ratio is inferior when the robot is in the adaptive mode, compared with
when the robot is in the reactive mode.
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percentage of strong strokes between adaptive and reactive

modes. However, the proportion of cases where this average

is smaller in the adaptive mode is 6 cases out of 7. The

probability of obtaining such a deviation (6 or more cases out

of 7) from a fifty-fifty ratio is 0.016 (two-tailed probability in

the binomial test) which shows that, in the adaptive mode, the

percentage of children who react less strongly in the adaptive

mode deviates significantly from a fifty-fifty ratio.

2) Impact of the adaptive robot on the frequency of

interaction: To analyse the impact of the adaptive robot on

the frequency of interaction, we look at the four classes S0,

S1, S2, S3 and how their occurrence varies in the adaptive

and reactive modes.

We define R as the set of the three runs (steps) within

a session for a specific child and NSi
(r) as the number of

events from a class Si for a specific run r. For each class

Si, each child, and each session, we define the relative ratio

ρSi
(r) for a given run r, defined as follows:

ρSi
(r) =

NSi
(r)∑

r̃∈RNSi
(r̃)

(4)

For each child, for each mode m (adaptive or reactive) and

for each class Si, the average relative ratio over the two

sessions is called Avm(ρSi
). For each child and for each

mode m, the average relative ratio over the four classes is

called Avm(ρ).
The Wilcoxon test is firstly applied to the two following

variables: AvAdaptive(ρ) (representing the adaptive mode)

and AvReactive(ρ) (representing the reactive mode). The test

shows that there is a significant effect of the experimental

conditions (adaptive versus reactive) since for T = 0, one

has p < 0.018, with N = 7. We can conclude that, in the

adaptive mode, the interactions are significantly richer than

in the reactive mode.

Secondly, the Wilcoxon test is applied for each class

i separately, to the following variables: AvAdaptive(ρSi
)

(representing the adaptive mode) and AvReactive(ρSi
) (rep-

resenting the reactive mode). For class S0 (respectively

class S1) there is no significant difference between the two

experimental conditions (adaptive versus reactive), since, for

T = 5.000 (respectively T = 4.000), p < 0.128 (respectively

p < 0.173) with N = 7. However, the proportion of

cases where AvAdaptive(ρS0
) > AvReactive(ρS0

) (respec-

tively AvAdaptive(ρS1
) > AvReactive(ρS1

)) is 6 cases out

of 7. The probability of obtaining such a deviation (6 or

more cases out of 7) from a fifty-fifty ratio is 0.016 (two-

tailed probability in the binomial test) which shows that

the percentage of children for which there are more events

related to S0 (respectively S1) in the adaptive mode than

in the reactive mode deviates significantly from a fifty-fifty

ratio. Concerning S2 (respectively S3) there is a significant

effect of the experimental conditions Adaptive and Reactive

since for T = 1.000 (respectively T = 0.000), p < 0.028
(respectively p < 0.018) with N = 7 (Fig. 9 and Fig. 10).

Consequently, in the adaptive mode, there are significantly

more events from class S2 (respectively S3) than in the

reactive mode.

Box & Whisker Plot
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Fig. 9. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for S2. The two variables are AvAdaptive(ρS2

) and AvReactive(ρS2
).

Box & Whisker Plot

 Mean 

 Mean±SE 

 Mean±1.96*SE Adaptive (S3)

Reactive (S3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 10. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for S3 The two variables are AvAdaptive(ρS3

) and AvReactive(ρS3
)..

V. DISCUSSION

This study has shown that a robot that can adapt to child-

robot interaction tactile styles can influence positively the

children’s play styles. Firstly, the children engaged signifi-

cantly more in the interaction when the robot was adaptive

and significantly more children played more gently with

the robot in the adaptive mode. Besides, the interactions

were significantly richer and higher frequencies including

in particular a range of well balanced frequencies were

significantly more present in the adaptive mode. The in-

troduction of an adaptive robot in robot-assisted play for

children with autism which is able to adapt in real time to

children’s interaction styles is a novel contribution. This is

both a technical and methodological step forward in robot-

assisted play. On the one hand, the development of a new

computational method that enables robots to recognize in real

time human-robot interaction styles is a step forward towards

socially adaptive robots. On the other hand, the evaluation

of the potential of an adaptive robot in robot-assisted play

expands the role that robots could potentially play in the

context of autism therapy.
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The study conducted here involved only a few children and

was short-term. Future work should expand this study with

different children with autism. Note, in our study the children

were familiar with both the robot and the experimenter and

the robot’s behaviour mapping had been tailored according to

each child’s needs and abilities which is very important in the

context of autism. Future work should enable the same for the

new children involved. Besides, future work should consider

possible long-term effects of such an adaptive robot. In

particular, future work could expand the model of adaptation

by focusing on a larger grid of criteria for the interaction

styles: while the child progresses, the robot could increase

the range of criteria the child should meet to get a reward.

In contrast, when the child encounters some difficulties, then

the robot could simplify the range of criteria on which the

reward for the child is based, so that the child could get

a better understanding of the interactions happening. This

progressive refinement in the adaptation process of the robot

to the child’s play styles could be linked, in some sense,

to the notions of ‘discrete development’ and ‘(Alternate)

Freezing and Freeing of Degrees of Freedom’ which has

been widely used in developmental robotics [21; 22; 23].

This technique, typically applied for a system learning motor

skills, may be transposed to a social system, constituted here

by the child and the robot: this social system is freezing some

complexity in the interaction to learn more efficiently how

to deal with interaction in general.

VI. CONCLUSION

This paper has presented an application of the previously

introduced Cascaded Information Bottleneck Method for

real-time recognition of Human-Robot interaction styles in

the context of robot-assisted play for children with autism.

Such an adaptive robot, which can detect the play styles

of the children in real time and adapt to them accordingly,

has been implemented and tested in the particular context of

tactile interaction. The adaptation scheme rewards well bal-

anced interaction styles and encourages the child to engage

in the interaction if he/she is disengaged. The potential role

of such an adaptive robot (compared to a reactive robot) in

robot-assisted play has been evaluated with seven children

with autism in a school and a statistical analysis showed

that the adaptive mode influenced positively the play styles

of the children in the following manner: 1) the children

engaged significantly more in the interaction, 2) significantly

more children played more gently with the robot, 3) the

interactions were significantly richer and 4) the occurrence

of higher frequencies, including a range of well balanced

frequencies, was significantly increased. Future work should

consider a wider study with different children with autism

and investigate its long-term term impact. The Cascaded In-

formation Bottleneck Method is generic and could potentially

also be used in a variety of other applications in Robotics,

Artificial Intelligence and Artificial Life. It is hoped that

this work represents a step forward towards socially adaptive

robots as well as robot-assisted play for children with autism.
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