6,474 research outputs found

    Spin forming tubular elbows Patent

    Get PDF
    Apparatus and method for spin forming tubular elbows with high strength, uniform thickness, and close tolerance

    Ballistic limit of 6061 T6 aluminum and threat to surface coatings for use with orbiting space station space suit materials

    Get PDF
    In recent years orbiting satellites, spent components, collisions and explosions have populated the near earth orbit with debris potentially more hazardous than the average meteoroid debris. This new debris has an average density of aluminum (2.78 g/cc) and an average encounter velocity of 10 km/sec. The space station will require many hours of work in this environment and there is concern over hazard to the assembly personnel. A proposed hard suit design utilizes 6061-T6 Aluminum for most of its exposed area. The aluminum surface will be treated for thermal and radiation control. The basic thickness of this suit will be on the order of 1.78 mm (0.070 inches). The selection of 6061-T6 Aluminum for space suits for use on the space station would appear to be worthwhile. The relatively ductile behavior of 6061-T6 aluminum is better than a choice of a more brittle material

    A Memristor as Multi-Bit Memory: Feasibility Analysis

    Get PDF
    The use of emerging memristor materials for advanced electrical devices such as multi-valued logic is expected to outperform today's binary logic digital technologies. We show here an example for such non-binary device with the design of a multi-bit memory. While conventional memory cells can store only 1 bit, memristors-based multi-bit cells can store more information within single device thus increasing the information storage density. Such devices can potentially utilize the non-linear resistance of memristor materials for efficient information storage. We analyze the performance of such memory devices based on their expected variations in order to determine the viability of memristor-based multi-bit memory. A design of read/write scheme and a simple model for this cell, lay grounds for full integration of memristor multi-bit memory cell

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm

    Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    Full text link
    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet-host stars relative to otherwise ordinary stars appear when restricting the samples to narrow ranges of Teff or mass, but they are fully explained by age and metallicity biases. We confirm the lack of a connection between low lithium abundance and planets. However, we find that no low A_Li planet-hosts are found in the desert Teff window. Provided that subtle sample biases are not responsible for this observation, this suggests that the presence of gas giant planets inhibit the mechanism responsible for the lithium desert.Comment: ApJ, in press. Complete Tables 1 and 3 are available upon reques

    Discovery of 6.035GHz Hydroxyl Maser Flares in IRAS18566+0408

    Full text link
    We report the discovery of 6.035GHz hydroxyl (OH) maser flares toward the massive star forming region IRAS18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H2CO) and methanol (6.7 GHz CH3OH) maser flares. The observations were conducted between October 2008 and January 2010 with the 305m Arecibo Telescope in Puerto Rico. We detected two flare events, one in March 2009, and one in September to November 2009. The OH maser flares are not simultaneous with the H2CO flares, but may be correlated with CH3OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH3OH masers in IRAS18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.Comment: Accepted for publication in the Astrophysical Journa

    Lumbar spondylosis: clinical presentation and treatment approaches

    Get PDF
    Low back pain (LBP) affects approximately 60–85% of adults during some point in their lives. Fortunately, for the large majority of individuals, symptoms are mild and transient, with 90% subsiding within 6 weeks. Chronic low back pain, defined as pain symptoms persisting beyond 3 months, affects an estimated 15–45% of the population. For the minority with intractable symptoms, the impact on quality of life and economic implications are considerable. Despite the high prevalence of low back pain within the general population, the diagnostic approach and therapeutic options are diverse and often inconsistent, resulting in rising costs and variability in management throughout the country. In part, this is due to the difficulty establishing a clear etiology for most patients, with known nociceptive pain generators identified throughout the axial spine. Back pain has been termed as “an illness in search of a disease.” Indeed, once “red flag” diagnoses such as cancer and fracture have been ruled out, the differential sources of low back pain remain broad, including the extensive realm of degenerative changes within the axial spine for which radiological evaluation is nonspecific and causal relationships are tentative. We will elaborate on these degenerative processes and their clinical implications. We will further discuss diagnostic approaches and the efficacy of existing treatment options
    corecore