2,603 research outputs found

    Systematic and statistical errors in a Bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors

    Get PDF
    Advanced ground-based gravitational-wave detectors are capable of measuring tidal influences in binary neutron-star systems. In this work, we report on the statistical uncertainties in measuring tidal deformability with a full Bayesian parameter estimation implementation. We show how simultaneous measurements of chirp mass and tidal deformability can be used to constrain the neutron-star equation of state. We also study the effects of waveform modeling bias and individual instances of detector noise on these measurements. We notably find that systematic error between post-Newtonian waveform families can significantly bias the estimation of tidal parameters, thus motivating the continued development of waveform models that are more reliable at high frequencies

    Highly multimode memory in a crystal

    Full text link
    We experimentally demonstrate the storage of 1060 temporal modes onto a thulium-doped crystal using an atomic frequency comb (AFC). The comb covers 0.93 GHz defining the storage bandwidth. As compared to previous AFC preparation methods (pulse sequences i.e. amplitude modulation), we only use frequency modulation to produce the desired optical pumping spectrum. To ensure an accurate spectrally selective optical pumping, the frequency modulated laser is self-locked on the atomic comb. Our approach is general and should be applicable to a wide range of rare-earth doped material in the context of multimode quantum memory

    Stress Propagation through Frictionless Granular Material

    Full text link
    We examine the network of forces to be expected in a static assembly of hard, frictionless spherical beads of random sizes, such as a colloidal glass. Such an assembly is minimally connected: the ratio of constraint equations to contact forces approaches unity for a large assembly. However, the bead positions in a finite subregion of the assembly are underdetermined. Thus to maintain equilibrium, half of the exterior contact forces are determined by the other half. We argue that the transmission of force may be regarded as unidirectional, in contrast to the transmission of force in an elastic material. Specializing to sequentially deposited beads, we show that forces on a given buried bead can be uniquely specified in terms of forces involving more recently added beads. We derive equations for the transmission of stress averaged over scales much larger than a single bead. This derivation requires the Ansatz that statistical fluctuations of the forces are independent of fluctuations of the contact geometry. Under this Ansatz, the d(d+1)/2d(d+1)/2-component stress field can be expressed in terms of a d-component vector field. The procedure may be generalized to non-sequential packings. In two dimensions, the stress propagates according to a wave equation, as postulated in recent work elsewhere. We demonstrate similar wave-like propagation in higher dimensions, assuming that the packing geometry has uniaxial symmetry. In macroscopic granular materials we argue that our approach may be useful even though grains have friction and are not packed sequentially.=17Comment: 15 pages, 4 figures, revised vertion for Phys. Rev.

    A Simulation Model Of A Surveillance Radar Data Processing System Using Hi-Mass

    Get PDF
    This paper discusses the model specification, construction of the executable model, model execution, and the simulation results of a simulation model of a surveillance radar data processing system that was developed using the Hierarchical Modeling and Simulation System (HI-MASS). HI-MASS is an object oriented C++ based system that supports model specification (modeling) using the Hierarchical Control Flow Graph Model paradigm and executes simulation models using the sequential synchronous simulation execution algorithm. Models specified in this model paradigm use two complementary hierarchical specification structures, one to specify the model components and their interconnections and the other to specify the behaviors of the individual components. The components and their interconnections are specified in HI-MASS via visual interactive modeling

    Virulence of Oomycete Pathogens from \u3cem\u3ePhragmites australis\u3c/em\u3e-Invaded and Noninvaded Soils to Seedlings of Wetland Plant Species

    Get PDF
    Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species

    Novel targets, treatments, and advanced models for intracerebral haemorrhage

    Get PDF
    Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions. Here, we highlight emerging targets, but also existing gaps in preclinical animal modelling that prevent their exploitation. We particularly focus on (1) ICH aetiology, (2) the haematoma, (3) inflammation, and (4) post-ICH pathology. It is important to recognize that beyond neurons and the brain, other cell types and organs are crucially involved in ICH pathophysiology and successful interventions likely will need to address the entire organism. This review will spur the development of successful therapeutic interventions for ICH and advanced animal models that better reflect its aetiology and pathophysiology

    Systematic and detailed analysis of behavioural tests in the rat Middle Cerebral Artery Occlusion (MCAO) model of stroke: tests for long-term assessment

    Get PDF
    In order to test therapeutics, functional assessments are required. In pre-clinical stroke research, there is little consensus regarding the most appropriate behavioural tasks to assess deficits; especially when testing over extended times in milder models with short occlusion times and small lesion volumes. In this study we comprehensively assessed 16 different behavioural tests, with the aim of identifying those that show robust, reliable and stable deficits for up to 2 months. These tasks are regularly used in stroke research, as well as being useful for examining striatal dysfunction in models of Huntington’s and Parkinson’s disease. Two cohorts of male Wistar rats underwent the intraluminal filament model of MCAO (30min) and were imaged 24hrs later. This resulted in primarily subcortical infarcts, with a small amount of cortical damage. Animals were tested, along with sham and naïve groups at 24hrs, 7 days, and 1 and 2 months. Following behavioural testing, brains were processed and striatal neuronal counts were performed alongside measurements of total brain and white matter atrophy. The staircase, adjusting steps, rotarod and apomorphine induced rotations were the most reliable for assessing long-term deficits in the 30 min transient MCAO model of stroke
    • 

    corecore