397 research outputs found

    Zonal analysis of two high-speed inlets

    Get PDF
    Using a zonal technique, thin layer Navier-Stokes solutions for two high speed inlet geometries are presented and compared with experimental data. The first configuration consists of a 3-D inlet preceded by a sharp flat plate. Results with two different grids demonstrate the importance of adequate grid refinement in high speed internal flow computations. The fine grid solution has reasonably good agreement with experimental heat transfer and pressure values inside the inlet. The other configuration consists of a 3-D inlet mounted on a research hypersonic forebody. Numerical results for this configuration have good agreement with experimental pressure data along the forebody, but not inside the inlet. A more refined grid calculation is currently being done to better predict the flowfield in the inlet

    Photonic Quantum Logic with Narrowband Light from Single Atoms

    Get PDF
    Increasing control of single photons enables new applications of photonic quantum-enhanced technology and further experimental exploration of fundamental quantum phenomena. Here, we demonstrate quantum logic using narrow linewidth photons that are produced under nearly perfect quantum control from a single ^87Rb atom strongly coupled to a high-finesse cavity. We use a controlled- NOT gate integrated into a photonic chip to entangle these photons, and we observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. This enables quantum technology that will use the properties of both narrowband single photon sources and integrated quantum photonics, such as networked quantum computing, narrow linewidth quantum enhanced sensing and atomic memories.Comment: 5 pates, 3 figure

    Optical Properties of MFe_4P_12 filled skutterudites

    Full text link
    Infrared reflectance spectroscopy measurements were made on four members of the MFe_4P_12 family of filled skutterudites, with M=La, Th, Ce and U. In progressing from M=La to U the system undergoes a metal-insulator transition. It is shown that, although the filling atom induces such dramatic changes in the transport properties of the system, it has only a small effect on lattice dynamics. We discuss this property of the compounds in the context of their possible thermoelectric applications.Comment: Manuscript in ReVTeX format, 7 figures in PostScirpt forma

    Measurement of tibial nerve excursion during ankle joint dorsiflexion in a weight-bearing position with ultrasound imaging

    Get PDF
    The ability of peripheral nerves to stretch and slide is thought to be of paramount importance to maintain ideal neural function. Excursion in peripheral nerves such as the tibial can be measured by analysis of ultrasound images. The aim of this study was to assess the degree of longitudinal tibial nerve excursion as the ankle moved from plantar flexion to dorsiflexion in a standardised weight-bearing position. The reliability of ultrasound imaging to measure tibial nerve excursion was also quantified

    Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals

    Full text link
    We report on marked memory effects in the vortex system of twinned YBa2Cu3O7 single crystals observed in ac susceptibility measurements. We show that the vortex system can be trapped in different metastable states with variable degree of order arising in response to different system histories. The pressure exerted by the oscillating ac field assists the vortex system in ordering, locally reducing the critical current density in the penetrated outer zone of the sample. The robustness of the ordered and disordered states together with the spatial profile of the critical current density lead to the observed memory effects

    Spatial Structure and Coherent Motion in Dense Planetary Rings Induced by Self-Gravitational Instability

    Get PDF
    We investigate the formation of spatial structure in dense, self-gravitating particle systems such as Saturn's B-ring through local NN-body simulations to clarify the intrinsic physics based on individual particle motion. In such a system, Salo (1995) showed that the formation of spatial structure such as wake-like structure and particle grouping (clump) arises spontaneously due to gravitational instability and the radial velocity dispersion increases as the formation of the wake structure. However, intrinsic physics of the phenomena has not been clarified. We performed local NN-body simulations including mutual gravitational forces between ring particles as well as direct (inelastic) collisions with identical (up to N40000N\sim40000) particles. In the wake structure particles no longer move randomly but coherently. We found that particle motion was similar to Keplerian motion even in the wake structure and that the coherent motion was produced since the particles in a clump had similar eccentricity and longitude of perihelion. This coherent motion causes the increase and oscillation in the radial velocity dispersion. The mean velocity dispersion is rather larger in a more dissipative case with a smaller restitution coefficient and/or a larger surface density since the coherence is stronger in the more dissipative case. Our simulations showed that the wavelength of the wake structure was approximately given by the longest wavelength \hs{\lambda}{cr} = 4\pi^2 G\Sigma/\kappa^2 in the linear theory of axisymmetric gravitational instability in a thin disk, where GG, Σ\Sigma, and κ\kappa are the gravitational constant, surface density, and a epicyclic frequency.Comment: Accepted by Earth, Planets, and Space. 39 pages, 20 figures. PostScript files also available from http://www.geo.titech.ac.jp/nakazawalab/hdaisaka/works

    Elastic-to-plastic crossover below the peak effect in the vortex solid of YBa2Cu3O7 single crystals

    Full text link
    We report on transport and ac susceptibility studies below the peak effect in twinned YBa2Cu3O7 single crystals. We find that disorder generated at the peak effect can be partially inhibited by forcing vortices to move with an ac driving current. The vortex system can be additionally ordered below a well-defined temperature where elastic interactions between vortices overcome pinning-generated stress and a plastic to elastic crossover seems to occur. The combined effect of these two processes results in vortex structures with different mobilities that give place to history effects.Comment: 4 pages, 4 figures. Published in PRB Rapid Comm., February 1, 200

    A model for collisions in granular gases

    Full text link
    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure

    Concise Reporting of Benign Endometrial Biopsies is an Acceptable Alternative to Descriptive Reporting

    Get PDF
    In the United Kingdom, endometrial biopsy reports traditionally consist of a morphologic description followed by a conclusion. Recently published consensus guidelines for reporting benign endometrial biopsies advocate the use of standardized terminology. In this project we aimed to assess the acceptability and benefits of this simplified "diagnosis only" format for reporting non-neoplastic endometrial biopsies. Two consultants reported consecutive endometrial biopsies using 1 of 3 possible formats: (i) diagnosis only, (ii) diagnosis plus an accompanying comment, and (iii) the traditional descriptive format. Service users were asked to provide feedback on this approach via an anonymized online survey. The reproducibility of this system was assessed on a set of 53 endometrial biopsies among consultants and senior histopathology trainees. Of 370 consecutive benign endometrial biopsies, 245 (66%) were reported as diagnosis only, 101 (27%) as diagnosis plus a brief comment, and 24 (7%) as diagnosis following a morphologic description. Of the 43 survey respondents (28 gynecologists, 11 pathologists, and 4 clinical nurse specialists), 40 (93%) preferred a diagnosis only, with 3 (7%) being against/uncertain about a diagnosis only report. Among 3 histopathology consultants and 4 senior trainees there was majority agreement on the reporting format in 53/53 (100%) and 52/53 (98%) biopsies. In summary, we found that reporting benign specimens within standardized, well-understood diagnostic categories is an acceptable alternative to traditional descriptive reporting, with the latter reserved for the minority of cases that do not fit into specific categories. This revised approach has the potential to improve reporting uniformity and reproducibility

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum
    corecore