1,220 research outputs found

    Management by Textbook: The Role of Textbooks in Developing Critical Thinking

    Full text link
    © 2015, © The Author(s) 2015. Critical thinking is widely regarded as a crucial capability for competent management and also for any leadership role in society. In this article, we ask, “How do textbooks play a role in the weakness of many management graduates’ critical thinking skills?” Management teachers can find plentiful advice about best teaching practices, yet the critical skills gap remains. We argue that the nature and use of management textbooks intersect and interact with students’ epistemology to support a culture of surface learning, resulting in a failure to develop critical thinking skills. Textbooks reinforce underdeveloped student epistemology through limitations of content and position students as passive recipients of an authoritative version of oversimplified knowledge. In our survey of 30 successful management textbooks, we found the majority of popular management textbooks potentially inhibit, or only weakly support, the development of students’ capacity for critical thinking. The article concludes with suggestions for improving textbooks and textbook choice or considering alternatives

    Using Available Volume to Predict Fluid Diffusivity in Random Media

    Full text link
    We propose a simple equation for predicting self-diffusivity of fluids embedded in random matrices of identical, but dynamically frozen, particles (i.e., quenched-annealed systems). The only nontrivial input is the volume available to mobile particles, which also can be predicted for two common matrix types that reflect equilibrium and non-equilibrium fluid structures. The proposed equation can account for the large differences in mobility exhibited by quenched-annealed systems with indistinguishable static pair correlations, illustrating the key role that available volume plays in transport.Comment: to appear in Physical Review E (12 pages, 4 figures

    Thermodynamics predicts how confinement modifies hard-sphere dynamics

    Full text link
    We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an excellent approximation, independent of channel width or particle-wall interactions. Thus, thermodynamics can be used to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure

    Five-dimensional Nernst branes from special geometry

    Get PDF
    We construct Nernst brane solutions, that is black branes with zero entropy density in the extremal limit, of FI-gauged minimal five-dimensional supergravity coupled to an arbitrary number of vector multiplets. While the scalars take specific constant values and dynamically determine the value of the cosmological constant in terms of the FI-parameters, the metric takes the form of a boosted AdS Schwarzschild black brane. This metric can be brought to the Carter-Novotny-Horsky form that has previously been observed to occur in certain limits of boosted D3-branes. By dimensional reduction to four dimensions we recover the four-dimensional Nernst branes of arXiv:1501.07863 and show how the five-dimensional lift resolves all their UV singularities. The dynamics of the compactification circle, which expands both in the UV and in the IR, plays a crucial role. At asymptotic infinity, the curvature singularity of the four-dimensional metric and the run-away behaviour of the four-dimensional scalar combine in such a way that the lifted solution becomes asymptotic to AdS5. Moreover, the existence of a finite chemical potential in four dimensions is related to fact that the compactification circle has a finite minimal value. While it is not clear immediately how to embed our solutions into string theory, we argue that the same type of dictionary as proposed for boosted D3-branes should apply, although with a lower amount of supersymmetry.Comment: 59 pages, 1 figure. Revised version: references added, typos corrected. Final version, accepted by JHEP: two references adde

    Orientational correlations in confined DNA

    Get PDF
    We study how the orientational correlations of DNA confined to nanochannels depend on the channel diameter D by means of Monte Carlo simulations and a mean-field theory. This theory describes DNA conformations in the experimentally relevant regime where the Flory-de Gennes theory does not apply. We show how local correlations determine the dependence of the end-to-end distance of the DNA molecule upon D. Tapered nanochannels provide the necessary resolution in D to study experimentally how the extension of confined DNA molecules depends upon D. Our experimental and theoretical results are in qualitative agreement.Comment: Revised version including supplemental material, 7 pages, 8 figure

    A coupled drug kinetics-cell cycle model to analyse the response of human cells to intervention by topotecan

    Get PDF
    A model describing the response of the growth of single human cells in the absence and presence of the anti-cancer agent topotecan (TPT) is presented. The model includes a novel coupling of both the kinetics of TPT and cell cycle responses to the agent. By linking the models in this way, rather than using separate (disjoint) approaches, it is possible to illustrate how the drug perturbs the cell cycle. The model is compared to experimental in vitro cell cycle response data (comprising single cell descriptors for molecular and behavioural events), showing good qualitative agreement for a range of TPT dose levels

    Stereotype and skew: Quantifying gender bias in pre-trained and fine-tuned language models

    Get PDF
    This paper proposes two intuitive metrics, skew and stereotype, that quantify and analyse the gender bias present in contextual language models when tackling the WinoBias pronoun resolution task. We find evidence that gender stereotype correlates approximately negatively with gender skew in out-of-the-box models, suggesting that there is a trade-off between these two forms of bias. We investigate two methods to mitigate bias. The first approach is an online method which is effective at removing skew at the expense of stereotype. The second, inspired by previous work on ELMo, involves the fine-tuning of BERT using an augmented gender-balanced dataset. We show that this reduces both skew and stereotype relative to its unaugmented fine-tuned counterpart. However, we find that existing gender bias benchmarks do not fully probe professional bias as pronoun resolution may be obfuscated by cross-correlations from other manifestations of gender prejudice. Our code is available online

    Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles

    Full text link
    Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld's observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.Comment: 15 pages, 10 figure

    Energy stress-mediated cytotoxicity in tuberous sclerosis complex 2-deficient cells with nelfinavir and mefloquine treatment

    Get PDF
    To find new anti-cancer drug therapies, we wanted to exploit homeostatic vulnerabilities within Tuberous Sclerosis Complex 2 (TSC2)-deficient cells with mechanistic target of rapamycin complex 1 (mTORC1) hyperactivity. We show that nelfinavir and mefloquine synergize to selectively evoke a cytotoxic response in TSC2-deficient cell lines with mTORC1 hyperactivity. We optimize the concentrations of nelfinavir and mefloquine to a clinically viable range that kill cells that lack TSC2, while wild-type cells tolerate treatment. This new clinically viable drug combination causes a significant level of cell death in TSC2-deficient tumor spheroids. Furthermore, no cell recovery was apparent after drug withdrawal, revealing potent cytotoxicity. Transcriptional profiling by RNA sequencing of drug treated TSC2-deficient cells compared to wild-type cells suggested the cytotoxic mechanism of action, involving initial ER stress and an imbalance in energy homeostatic pathways. Further characterization revealed that supplementation with methyl pyruvate alleviated energy stress and reduced the cytotoxic effect, implicating energy deprivation as the trigger of cell death. This work underpins a critical vulnerability with cancer cells with aberrant signaling through the TSC2-mTORC1 pathway that lack flexibility in homeostatic pathways, which could be exploited with combined nelfinavir and mefloquine treatment
    • …
    corecore