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Abstract

We construct Nernst brane solutions, that is black branes with zero entropy density in the

extremal limit, of FI-gauged minimal five-dimensional supergravity coupled to an arbitrary

number of vector multiplets. While the scalars take specific constant values and dynami-

cally determine the value of the cosmological constant in terms of the FI-parameters, the

metric takes the form of a boosted AdS Schwarzschild black brane. This metric can be

brought to the Carter-Novotný-Horský form that has previously been observed to occur

in certain limits of boosted D3-branes. By dimensional reduction to four dimensions we

recover the four-dimensional Nernst branes of arXiv:1501.07863 and show how the five-

dimensional lift resolves all their UV singularities. The dynamics of the compactification

circle, which expands both in the UV and in the IR, plays a crucial role. At asymp-

totic infinity, the curvature singularity of the four-dimensional metric and the run-away

behaviour of the four-dimensional scalar combine in such a way that the lifted solution

becomes asymptotic to AdS5. Moreover, the existence of a finite chemical potential in four

dimensions is related to fact that the compactification circle has a finite minimal value.

While it is not clear immediately how to embed our solutions into string theory, we argue

that the same type of dictionary as proposed for boosted D3-branes should apply, although

with a lower amount of supersymmetry.
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1 Introduction

The Nernst law or third law of thermodynamics comes in two versions. The weak version,

which states that zero temperature can only be reached asymptotically, is uncontroversial.

In constrast, there is an ongoing discussion about the status of the strong version, originally

formulated by Planck, which states that entropy goes to zero at zero temperature. See for

example [1–4] for contrasting views on this. With regard to gauge/gravity duality, there is

a natural tension between condensed matter systems, where the strong version is believed to

apply generally or at least generically, and BPS and other extremal black hole solutions, where

a regular, and hence normally finite, horizon is associated with a finite, and typically large

entropy. This raises the question whether and how systems obyeing the strong version of the

Nernst law can be modelled by gravitational counterparts.

Extremal black brane solutions obeying the strong version of the Nernst law have been

found in a variety of theories [3, 5–9], including four-dimensional FI-gauged supergravity [10],

where they were dubbed Nernst branes. More recently, a two-parameter family of Nernst

branes parametrized by temperature T and a chemical potential µ was found in [11]. Asymp-

totically, these solutions approach hyperscaling violating Lifshitz (‘hvLif’) geometries both at

infinity and at the horizon, and therefore are interesting in the context of gauge/gravity dual-

ity with hyperscaling violation [12, 13], see also [14] and references therein. Four-dimensional

Nernst branes share the typical problems of hvLif geometries, in that they exhibit curvature

singularities [15, 16]. Moreover the scaling properties of the geometry at infinity suggested an

entropy–temperature relation of the form S ∼ T 3, while the high-temperature asymptotics ex-

tracted from the equation of state was found to be S ∼ T .1 Since in addition the scalars showed

runaway behaviour at infinity, and the relation S ∼ T 3 is valid for AdS5, it was conjectured

in [11] that the inconsistent UV behaviour of four-dimensional Nernst branes signals a dynam-

ical decompactification, and that the above problem would be cured by lifting the solutions to

five dimensions. This follows the general idea that scale covariant vacua can be obtained by

dimensional reduction of scale invariant vacua [14].

In this paper we will verify this proposal and study the relation between five-dimensional

1 Since the brane world volume is infinite, extensive quantities such as entropy are supposed to be taken per
unit volume.
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and four-dimensional Nernst branes in detail. The five-dimensional Nernst branes will be con-

structed within FI-gauged minimal five-dimensional supergravity with an arbitrary number of

vector multiplets, by dimensional reduction to an effective three-dimensional Euclidean theory

and using the special geometry of the scalar sector. We will show that the singular asymp-

totic behaviour of four-dimensional Nernst branes is a compactification artefact, and that the

ground state geometry is AdS5. A crucial role in understanding the relation between five- and

four-dimensional Nernst branes is played by the compactification circle, whose size changes dy-

namically along the direction transverse to the brane. The behaviour of this circle also solves

another puzzle, namely the origin of the four-dimensional chemical potential. Five-dimensional

Nernst branes turn out to be boosted AdS Schwarzschild branes, depending on two continuous

parameters, the temperature T , and the linear momentum Pz. Since momentum turns into

electric charge upon dimensional reduction, one might naively expect that four-dimensional

Nernst branes depend on one continuous parameter, temperature T and on one discrete pa-

rameter, electric charge Q0. However, the solutions of [11] depend on an additional continuous

parameter, the chemical potential µ. As it turns out, its origin can be traced to the fact that

the compactification circle grows towards infinity and towards the horizon, and has a minimum

in between. This minimum introduces a new scale, and since the minimal value of the radius

can be varied continuously, this provides an additional continuous parameter.

The boosted AdS Schwarzschild metric we obtain by solving the five-dimensional equations

of motion is an Einstein metric and can be brought to Carter-Novotný-Horský form. Such

metrics describe the near horizon regions of dimensionally reduced D-branes and M-branes

with superimposed pp-waves [17]. This does, however, not immediately provide us with a

string theory embedding of our solutions, unless we switch off the vector multiplets. The

solution we find is valid for an arbitrary number of vector multiplets, and depends on the

choice of the prepotential and on the choice of an FI-gauging through parameters cijk and gi.

While the scalars are constant, they still have to extremize the scalar potential, and therefore

these parameters determine the effective cosmological constant, and enter into the various

integration constants of our solution. We will give explicit expressions in the paper. FI-gauged

five-dimensional N = 2 supergravity2 has so far only been obtained as a consistent truncation

of a higher-dimensional supergravity in a very limited number of cases. The case without

vector multiplets, that is pure gauged five-dimensional N = 2 supergravity, can be obtained

by reduction of IIB supergravity on Sasaki-Einstein manifolds Y p,q [18]. The STU-model and

consistent truncations thereof can be obtained as consistent reductions of eleven-dimensional

supergravity [19, 20]. Other consistent truncations involve hypermultiplets or massive vector

multiplets and consequently have different types of gauging [21,22]. The dimensionally reduced

boosted D3-branes of [17] which lead to the same five-dimensional metric should be considered as

2We count supersymmetry in four-dimensional units.
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solutions of five-dimensional gauged N = 8 supergravity, which can be obtained by reduction

of IIB supergravity on S5. In this case the five-dimensional cosmological constant is simply

determined by the D3-charge, and we cannot account for the parameters cijk, gi of an FI-

gauged supergravity theory with vector multiplets. But while there is no obvious string theory

embedding of our solutions, the five-dimensional metric is still the same as for boosted D3-

branes. Therefore it is reasonable to assume that at least the same type of dictionary between

geometry and field theory will apply. We will come back to this in the conclusions. Throughout

the paper we keep a strictly five-dimensional perspective and work with relations between

geometric and thermodynamical quantities without using any higher-dimensional or stringy

input.

Our work includes a detailed study of the thermodynamical properties of five-dimensional

Nernst branes. Using the quasilocal energy momentum tensor we construct expressions for

the mass M and momentum Pz. From the near horizon behaviour of the solution we obtain

the entropy S and through the surface gravity of the Killing horizon, the temperature T . We

verify the validity of the first law, as well as the strong version of the third law. The solution

is shown to be thermodynamically stable. We obtain an equation of state and show that the

relation between entropy and temperature interpolates between S ∼ T 3 at high temperature

and S ∼ T 1/3 at low temparture. This asymptotic behaviour agrees with the literature on

boosted D3-branes [17, 23] and verifies the prediction of [11]. One subtlety is that the metric

admits a reparametrisation, which naively removes the integration constant corresponding to the

temperature (as long as temperature is non-zero) from the solution.3 However, as the detailed

analysis shows, when properly setting up thermodynamics using the quasi-local stress energy

tensor, temperature is defined by a reparametrisation invariant expression. The additional

input that thermodynamics requires is the choice of the norm of the static Killing vector field,

which should be considered as part of the choice of the AdS5 groundstate.

Besides the trivial extremal limit, which is global AdS5, the solution admits a non-trivial

double scaling limit, where temperature goes to zero, and the boost parameter goes to infinity

while the momentum (density) is kept fixed. This limit was studied (in different coordinates)

in [17], where it was shown to result in a homogenoeus Einstein space of Kaigorodov type,

which is 1/4 BPS. This analysis applies to our solution and implies that it supports 2 out of

a maximum of 8 Killing spinors. In the extremal limit we also recover the five-dimensional

extremal Nernst branes of [24]. There are interesting parallels as well as differences between

boosted AdS Schwarzschild black branes and rotating black holes. Like for a Kerr black hole,

boosted branes have an ‘ergoregion’ that is a region before the event horizon where observers

cannot stay static any more, but have to co-translate with the brane. Also, the Euclidean

continuation of such a brane looks very similar to that of a Kerr black hole, and allows to derive

3A related observation was made in [17], where it was pointed out that one can locally remove the pp wave
from the non-extremal solution by a coordinate transformation.
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the temperature by imposing the absence of a conical deficit. In other aspects the analogy breaks

down, however. While supersymmetric rotating black holes cannot have an ergosphere [25], the

ergoregion of an infinitely boosted black brane remains. We show that this is consistent with

supersymmetry, because the Killing vector obtained as a Killing spinor bilinear is null rather

than timelike. Since we are interested in how the lift to five dimensions affects the curvature

singularities of four-dimensional Nernst branes, we work out explicit expressions for the five- and

four-dimensional curvature in our preferred coordinate systems. Part of these results have been

obtained in the previous literature, and where results can be compared, we find agreement.

Our own contribution is to explicitly demonstrate how singular four-dimensional asymptotic

hvLif metrics, when combined with the four-dimensional scalars encoding the dynamics of an

additional compact direction, lift consistently to a geometry asymptotic to AdS5. This does

not only show that the hvLif singularities are artefacts resulting from, as one might say, a

‘bad slicing’ of AdS5, but the mechanism is dynamical in the sense that the run-away of the

four-dimensional scalars encodes the decompactification of the fifth dimension.

This removes all the sp curvature singularities and run-away behaviour of scalars that four-

dimensional Nernst branes exhibit at asymptotic infinity.4 In addition, four-dimensional Nernst

branes also have pp curvature singularities which lead to infinite tidal forces acting on freely

falling observers. These occur at the horizon, and only at zero temperature. They are again

accompanied by run-away behaviour of the scalar fields, which encodes the dynamical decom-

pactification of a fifth dimension. But in contrast to what happens at asymptotic infinity

under decompactification, the pp singularity of the asymptotic hvLif space [16] is not removed

but lifted to the pp singularity of a five-dimensional Kaigorodov-type space-time [27]. This

shows that pp singularities and infinite tidal forces are intricately related to the vanishing of

the entropy (density), thus bringing us back full circle to the third law. We will continue this

discussion in the final section.

Outline of the paper

In Section 2 we review five-dimensional N = 2 FI gauged supergravity with vector multiplets

and its dimensional reduction to three Euclidean dimensions. In Section 3 we obtain five-

dimensional Nernst branes by solving the three-dimensional effective equations of motion and

lifting the solution back to five dimensions. We solve the full second order equations of motion

but observe that imposing regularity conditions reduces the number of parameters by one

half, so that the solution will satisfy a unique set of first order equations, despite being non-

extremal. By a coordinate transformation the solution can be brought to the form of a boosted

AdS Schwarzschild black brane, and further to a metric of Carter-Novotný-Horský type. We

4Following the terminology of [26] sp singularities correspond to a scalar invariant formed out of the Riemann
tensor becoming infinite, while pp singularities are curvature singularities observed in a parallely propagated
frame. These can occur even if all scalar curvature invariants are finite, and correspond to infinite tidal forces
experienced by freely falling observers. This will be demonstrated in some detail later in the paper.
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work out the thermodynamics in full detail, investigate the extremal limit, compare geometrical

properties to those of rotating black holes, and analyse the behaviour of curvature. In Section

4 we perform a reduction to four dimensions and show that we recover the four-dimensional

Nernst branes of [11]. The relations between the geometrical and thermodynamical properties

of five-dimensional and four-dimensional Nernst branes is worked out in detail. In Section 5 we

interpret the results, obtain a consistent picture which ties together five- and four-dimensional

Nernst branes, and discuss its interpretation in the context of the gauge/gravity correspondence.

We also come back to the question of a higher-dimensional string theory embedding, and use

the fact that our solutions have the same metric as reduced boosted D3-branes to set up a

gauge/gravity dictionary. We briefly explain how the method used in this paper to generate

solutions can be applied to find more general solutions in the future. Finally we discuss open

questions regarding the fate of pp curvature singularities and of the third law.

Various technical details have been relegated to appendices. Appendix A derives certain

re-writings of the scalar potential, which are used in the main text. Appendix B contains the

details of computing thermodynamic quantities using the quasi-local energy-momentum tensor.

While in Section 3 the Hawking temperature is obtained from the surface gravity of the Killing

horizon, Appendix C presents an alternative derivation using the Euclidean approach. This

allows to again compare boosted branes to rotating black holes. Appendices D and E give the

details for computing tidal forces in five and in four dimensions, respectively. These details have

been included to give, in combination with the main text, a full and self-contained account of

curvature in five and four dimensions. In Appendix F we spell out the details of a ‘well known’

fact about the normalization of vector potentials, for completeness, and because we are not

aware of an easily digestible and sufficiently detailed explanation in the literature.

2 N = 2 gauged supergravity in five dimensions

2.1 Lagrangian of five-dimensional N = 2 gauged supergravity with

vector multiplets

We start with the five-dimensional Lagrangian for N = 2 gauged supergravity coupled to n

vector multiplets [28]. Our conventions for the ungauged sector follow those of [29], albeit with

the opposite sign for the Einstein-Hilbert term:

e−1
5 L5 = − 1

2κ2
R(5) −

3

4κ2
aij(h)∂µ̂h

i∂µ̂hj − 1

4
aij(h)F iµ̂ν̂F j|µ̂ν̂

+
κ

6
√

6
e−1

5 cijkε
µ̂ν̂ρ̂σ̂λ̂F iµ̂ν̂F

j
ρ̂σ̂A

k
λ̂

+ V5(h), (2.1)

with κ2 = 8πG5. Here µ̂, ν̂, . . . are five-dimensional Lorentz indices, while i, j, . . . = 1, . . . , n +

1 label the five-dimensional gauge fields. We use a formulation of the theory where the n-

dimensional scalar manifold H is parametrised by n + 1 scalar fields hi which are subject to
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real scale transformations. This formulation is natural in the context of the superconformal

calculus and will turn out to be helpful for finding solutions. The construction of the theory

of five-dimensional vector multiplets coupled to supergravity using the superconformal calculus

can be found in [30, 31], while the superconformal method in general is reviewed in [32]. We

will in addition use the formulation of special real geometry developed in [33–36].

As explained in more detail in [35,36], the scalars hi are special coordinates on an open do-

main U ⊂ Rn+1, which is invariant under the action of the group R>0 by scale transformations.

The manifold U is the scalar manifold of an auxiliary theory of n + 1 superconformal vector

multiplets, from which a theory of n vector multiplets coupled to Poincaré supergravity is ob-

tained by gauge fixing. U is a so-called conic affine special real (CASR) manifold. This means

that it carries a Hessian metric which transforms with weight 3 under the R>0-action. When

choosing special coordinates, which are affine coordinates with respect to the Hessian structure

and transform with weight 1 under scale transformations, the Hesse potential is a homogeneous

cubic polynomial, H(h) = cijkh
ihjhk. In this way one recovers the original definition of [28].

The physical scalar manifold of the supergravity theory can be identified with the hypersurface

H ⊂ U defined by

H(h) = cijkh
ihjhk = 1 . (2.2)

Note that the R>0-action is transverse to this hypersurface, so that we can identify H ' U/R>0.

This is a real version of the superconformal quotients for four-dimensional vector multiplets and

for hypermultiplets.

The manifold H will be referred to as a projective special real (PSR) manifold. In the

Lagrangian (2.1) we use the special coordinates hi, but it is understood that the constraint

(2.2) has been imposed. Within the superconformal calculus this constraint is the ‘D-gauge’

which gauge fixes the local dilatations of the auxiliary superconformal theory in order to obtain

the associated Poincaré supergravity theory in its conventional form. In (2.1) this is reflected

by the Einstein-Hilbert term having its dimension-full prefactor ∼ κ−2, rather than being

multiplied by a conformal compensator to make it scale invariant.

In (2.1) we have chosen to express both the scalar and the vector couplings using the

symmetric, positive definite tensor field

aij(h) =
∂2H̃

∂hi∂hj
= −2

(
(ch)ij
chhh

− 3

2

(chh)i(chh)j
(chhh)2

)
, H̃ = −1

3
logH . (2.3)

Here we use a notation which suppresses indices which are summed over: chhh := cijkh
ihjhk,

(chh)i := cijkh
jhk, etc. The tensor ∂2H̃ = aijdh

idhj is a positive definite Hessian metric with

Hesse potential H̃ on U . While it is different from the conical Hessian metric gU = ∂2H, which

has Lorentz signature, with the negative eigendirection along the orbits of the R>0-action, the

pullbacks of both metrics to the hypersurface H agree, so that one can use either to obtain
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the positive definite metric gH which encodes the self-couplings of the n physical scalars. The

couplings of the n+ 1 physical vector fields are given by the restriction of the positive definite

metric aij to H.

The scalar potential V5(h) in (2.1) results from an FI-gauging parametrized by n+1 gauging

parameters gi. Using the expressions of [37] and [38] we find

V5(h) = 2 · 6−1/3
[
(chhh)(ch)−1|ij + 3hihj

]
gigj . (2.4)

We have fixed a convenient normalisation of the gauging parameters gi by comparing the di-

mensional reduction of (2.1) to the four-dimensional scalar potential of [11], evaluated for a

“very special prepotential”

F (X) = −1

6

cijkX
iXjXk

X0
,

that is a prepotential which can arise by reduction from five to four dimensions.5

We remark that while on the physical scalar manifold we have to impose the constraint

chhh = 1, we have kept factors of chhh explicit in (2.3) and (2.4). This is useful in keeping

track of the scaling weights of fields, and thus checking that expressions are consistent with the

scaling properties of the corresponding gauge-equivalent superconformal theory. We have chosen

our conventions such that the scaling weights of the fields used in (2.1) match with [30,31]. In

particular, we take

w(hi) = −1

2
, w(cijk) =

3

2
, w(gµ̂ν̂) = 2, w(Aµ̂) = 0, w(κ−2) = 3, w(gi) = 3 .

As a quick check, note that the Lagrangian (2.1) has scaling weight 5, so that the resulting

action has scaling weight 0. Further, provided that we include the appropriate factors of chhh,

the functions aij and V are homogeneous in hi, even in presence of the dimension-full factors

κ and gi, which appear after imposing D-gauge.6 Note that throughout the remainder of this

paper, we shall set κ2 = 8πG5 = 1.

2.2 Reduction to three dimensions

We now want to reduce the five-dimensional theory to three (Euclidean) dimensions. We make

the metric ansatz

ds2
(5) = 6−2/3σ2

(
dx0 +A0

4dx
4
)2 − 61/3

(
φ

σ

)(
dx4
)2

+
61/3

σφ
ds2

(3), (2.5)

where all fields depend only on the coordinates of the three-dimensional space. In addi-

tion we choose to switch off all of the five-dimensional gauge fields Ai = 0, i.e. we look

5Specifically, comparing to eqn. (30) of [38] we have MI = 61/3hi, AI = 2 · 6−1/6Ai, and gPI = 1√
2
gi.

6See [30,31] and [32] for more details about the superconformal gauge fixing.
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only for uncharged five-dimensional solutions.7 The presence of the Kaluza-Klein one-form

A0 = A0
4dx

4 ≡ −
√

2ζ0dx4 indicates that we are looking for non-static five-dimensional solu-

tions. Upon compactification of the x0 circle this will give rise to a non-trivial electric charge

for the corresponding four-dimensional solution. Note that whilst the Killing vector ∂/∂x0 is

always space-like in five dimensions, ∂/∂x4 can be either time-like, space-like, or null, depend-

ing on the magnitude of A0
4. However, after performing the dimensional reduction over x0, the

x4 direction will always be time-like in four dimensions, and so we are able to use the same

dimensional reduction technique as in [39], i.e. we reduce over both a space-like and time-like

direction.

The resulting three-dimensional action is given by

e−1
3 L3 = −1

2
R(3) −

3

4
aij(h)∂µh

i∂µhj − 1

4φ2
(∂φ)2 − 3

4σ2
(∂σ)2 +

σ3

12φ
(∂ζ0)2 + V3(h), (2.6)

where the three-dimensional scalar potential is given by

V3(h) =
61/3

σφ
V5(h) =

2

σφ

[
(chhh)(ch)−1|ij + 3hihj

]
gigj . (2.7)

In order to solve the equations of motion resulting from (2.6) it turns out to be convenient to

introduce the variables u, v and yi via

σ = u−
1
2 v−

1
2 , φ = u

1
2 v−

3
2 , yi = vhi, ĝij(y) = − 3

4v2
aij(h), (2.8)

so that the three-dimensional Lagrangian (2.6) becomes

e−1
3 L3 = −1

2
R(3) + ĝij(y)∂µy

i∂µyj − 1

4u2
(∂u)2 +

1

12u2
(∂ζ0)2 + V3(y). (2.9)

The scalar potential is given in terms of the new fields by

V3(y) = 2
[
(cyyy)(cy)−1|ij + 3yiyj

]
gigj

= 3
[
ĝij(y) + 4yiyj

]
gigj . (2.10)

The explicit steps used in getting to the second line are carried out in Appendix A.

We note that the Lagrangian (2.9) has no explicit dependence on the field v appearing

in the metric ansatz. This reflects the fact that when taking the rescaled scalar fields yi as

independent variables, the field v becomes dependent, and can be recovered from the equation

v3 = cyyy,

which follows from the hypersurface constraint chhh = 1. In terms of the new fields u and v,

7 We remark that four-dimensional solutions which will lift to charged five-dimensional solutions have been
found in [11]. The detailed analysis of these solutions is left to future work.
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the five-dimensional metric ansatz (2.5) becomes

ds2
(5) =

6−2/3

uv

(
dx0 −

√
2 ζ0dx4

)2

− 61/3u

v
(dx4)2 + 61/3v2ds2

(3). (2.11)

The independent three-dimensional variables are: the metric ds2
(3), the scalars yi which encode

the n independent five-dimensional scalars together with the Kaluza-Klein scalar v, the second

Kaluza-Klein scalar u, and the scalar ζ0 which is dual to the Kaluza-Klein vector from the

reduction over x4. The metric on the scalar submanifold parametrized by the yi,

ĝij(y) =
3

2

(
(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)
, (2.12)

is, up to a constant factor, isometric to the positive definite Hessian metric (2.3) on the manifold

U ' H×R>0 ' H×R. As shown in [35] this metric is isometric to the product metric gH+dr2

on H × R. From (2.9) it is manifest that the scalar manifold Q of the three-dimensional

Lagrangian carries a product metric, with the first factor parametrized by yi and the second

factor parametrized by u and ζ0. By inspection,8 the second factor is locally isometric to the

metric of the pseudo-Riemannian symmetric space SU(1, 1)/SO(1, 1) ' AdS2, which can be

thought of as the ‘indefinite signature version’ of the upper half plane (equivalently, of the unit

disk) SL(2,R)/SO(2) ' SU(1, 1)/U(1). To be precise u and ζ0 parametrise an open subset

which can identified with the Iwasawa subgroup of SU(1, 1), or, in physical terms, with the

static patch of AdS2. The combined scalar manifold parametrized by yi, u, ζ0,

Q = H×R× SU(1, 1)

SO(1, 1)
, (2.13)

has dimension n+ 1 + 2 = n+ 3.

If we perform the reduction of five-dimensional supergravity with n vector multiplets to

three Euclidean dimensions without any truncation, then the resulting scalar manifold is a

para-quaternionic Kähler manifold N̄PQK of dimension 2(2n + 2) + 4 = 4n + 8 [40, 41]. The

submanifold Q is obtained by a consistent truncation and therefore it is a totally geodesic

submanifold of N̄PQK . We remark that Q is a (totally geodesic) submanifold of the (2n + 4)-

dimensional totally geodesic para-Kähler manifold SPK described in [39,42],

Q = H×R× SU(1, 1)

SO(1, 1)
⊂ SPK ⊂ N̄PQK .

It was shown there how to obtain explicit stationary non-extremal solutions of four- and five-

dimensional ungauged supergravity by dimensional reduction over time. As we will see in

the following, it is still possible to obtain explicit solutions in the gauged case, where the

field equations of the three-dimensional scalars are modified by a scalar potential. While we

8For a systematic analysis of the scalar manifolds occuring in reduction to three space-like dimensions, we
refer the reader to [40,41].
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will retrict ourselves to the submanifold Q in this paper, the higher dimensional para-Kähler

submanifold SPK will be relevant when the present work is extended to more general, charged

solutions, including the solutions found in [11].

3 Five-dimensional Nernst branes

3.1 Solving the equations of motion

We now turn to the three-dimensional equations of motion coming from (2.9). The equations

of motion for yi, u and ζ0 read:

∇2yi + Γ̂ijk(y)∂µy
j∂µyk + 3Γ̂ijk(y)ĝjm(y)ĝkn(y)gmgn − 12(yjgj)ĝ

ik(y)gk = 0, (3.1)

∇2u− 1

u
(∂u)2 − 1

3u
(∂ζ0)2 = 0, (3.2)

∇2ζ0 − 2

u
∂µu ∂

µζ0 = 0, (3.3)

where we have introduced the Christoffel symbols for the metric ĝij(y):

Γ̂ijk(y) =
1

2
ĝil(y)∂lĝjk(y).

Meanwhile, the Einstein equations read

− 1

2
R(3)|µν + ĝij(y)∂µy

i∂νy
j − 1

4u2
∂µu ∂νu+

1

12u2
∂µζ

0∂νζ
0 + 3gµν

[
ĝij(y) + 4yiyj

]
gigj = 0.

(3.4)

We now proceed to solving the equations of motion (3.1)–(3.4), and make the following

brane-type ansatz for our three-dimensional line element:

ds2
(3) = e4ψdτ2 + e2ψ(dx2 + dy2), (3.5)

where ψ = ψ(τ) is some function to be determined, and τ is a radial coordinate which

parametrizes the direction orthogonal to the world-volume of the brane. This is the same

brane-like ansatz for the three-dimensional line element as in [11]. Moreover we will impose

that all of the fields yi, ζ0 and u depend only on τ . This coordinate has been chosen such that

it is an affine curve parameter for the curve C : τ 7→ (yi(τ), u(τ), ζ0(τ)) on the scalar manifold

Q.

The Ricci tensor has components

Rττ = 2ψ̈ − 2ψ̇2, Rxx = Ryy = e−2ψψ̈,
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from which we find that the Einstein equations (3.4) become

V3(y) =
1

2
e−4ψψ̈, (3.6)

for µ = ν 6= τ , and

− 1

2
ψ̈ + ψ̇2 = −ĝij(y)ẏiẏj +

u̇2

4u2
− (ζ̇0)2

12u2
, (3.7)

for µ = ν = τ , where we have used (3.6). We will now consider the equations of motion for

each of ζ0, u and yi in turn.

ζ0 equation of motion

The equation of motion (3.3) for ζ0 can be brought to the form

d

dτ

(
1

u2
ζ̇0

)
= 0,

which is solved by

ζ̇0 =
√

3Du2, (3.8)

for some integration constant D, where we have chosen the factor for later convenience. Once

we solve the equation of motion for u we will further integrate (3.8) to obtain an expression for

the Kaluza-Klein vector A0 = −
√

2ζ0 appearing in the five-dimensional metric.

u equation of motion

Substituting (3.8) in to the equation of motion (3.2) for u we find

ü− 1

u
u̇2 −D2u3 = 0. (3.9)

Introducing the variable χ = u−1, this becomes

χ̈− χ̇2 −D2

χ
= 0 . (3.10)

By differentiation we obtain the necessary condition χ̇χ̈ = χ
...
χ , which can be integrated to

χ̈ = B2
0χ, where B0 is a real constant.9 Parametrizing the general solution as

χ(τ) = A cosh(B0τ) +
B

B0
sinh(B0τ), (3.11)

with arbitrary constants A,B, and substituting back into the original equation (3.10) we find

the constraint

D2 = B2 −B2
0A

2 ,

9Negative B2
0 would yield a solution periodic in τ , which we discard.
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which imposes one relation between the four constants D,A,B,B0. It will turn out to be useful

in what follows to consider A, B0 and ∆ := B −B0A to be the independent quantities, and to

write everything in terms of these. In particular, we then have D2 = ∆(∆ + 2B0A).

We are also now in a position to further integrate (3.8), which we write as

ζ̇0 = ±
√

3∆(∆ + 2B0A)

χ2
. (3.12)

For simplicity we will chose the negative sign in (3.12), and will not carry through the corre-

sponding positive solution. Since ζ0 is dual to a Kaluza-Klein vector, this means that we have

fixed the sign of the ‘charge’ that the solution carries.10 Substituting in (3.11) and integrating,

we find

ζ0(τ) =

√
3B0 u(τ)√

∆(∆ + 2B0A)

[
A sinh(B0τ) +

B

B0
cosh(B0τ)

]
− ζ0
∞, (3.13)

for some integration constant ζ0
∞, which can be fixed by imposing a suitable physicality condi-

tion on the solution.

At this point we anticipate that a horizon, if it exists, will be located at τ →∞. Moreover, as

we will show in section 4, upon dimensional reduction we obtain a four-dimensional stationary

(in fact static) solution with a Killing horizon. Such horizons admit, for finite temperature, an

analytic continuation to a bifurcate horizon [43]. In order that the four-dimensional one-form

A0(τ) is well defined, it must vanish at the horizon [2, 44], see also Appendix F.

This fixes

ζ0
∞ =

√
3B0√

∆(∆ + 2B0A)
,

and therefore the Kaluza-Klein one-form is given by

A0(τ) = −
√

6∆

∆ + 2B0A
u(τ)e−B0τdx4. (3.14)

yi equation of motion

The equation of motion (3.1) for the yi becomes

e−4ψ ÿi + e−4ψΓ̂ijk(y)ẏj ẏk + 3Γ̂ijk(y)ĝjm(y)ĝkn(y) gmgn − 12 ĝij(y) gj(y
kgk) = 0. (3.15)

To proceed, we first contract (3.15) with the dual scalar fields yi := −ĝij(y)yj and make use of

the identity

Γ̂ijk(y)yi =
1

2
yiĝ

il(y)∂lĝjk(y) = −1

2
yl∂lĝjk(y) = ĝjk(y),

10As we will see in the following, the solution carries electric charge from the four-dimensional point of view
and linear momentum from the five-dimensional point of view.
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which follows from the fact that ĝij(y) is homogeneous of degree −2 in the yi. We thus find

e−4ψ ÿiyi + e−4ψ ĝij(y)ẏiẏj + V3(y) = 0,

which upon using (3.6) becomes

ÿiyi + ĝij(y)ẏiẏj = −1

2
ψ̈. (3.16)

Given that ĝij(y)ẏj = ẏi, we can integrate (3.16) to find

ẏiyi = −1

2
ψ̇ +

1

4
a0, (3.17)

for some integration constant a0, where the factor has been chosen for later convenience. Writing

ẏiyi =
3

4

(cyy)iẏ
i

cyyy
=

1

4

d

dτ
(log cyyy) ,

we can integrate (3.17) further to obtain

log cyyy = −2ψ + a0τ + b0, (3.18)

for an integration constant b0. Again the prefactor has been chosen for later convenience. We

now return to the Hamiltonian constraint (3.7). Using (3.11) and (3.8) this becomes:

− 1

2
ψ̈ + ψ̇2 =

1

4
B2

0 − ĝij(y)ẏiẏj . (3.19)

We then have the following picture. The solutions yi(τ) to (3.15) should satisfy the con-

straints (3.19) and constraint (3.17). One way to proceed, which is valid for generic five-

dimensional models, is to set all of the yi proportional to one another, i.e. we put yi = ξiy for

some constants ξi, which satisfy

ĝij(ξ)ξ
iξj = −3

4
.

Note that since the (constrained) scalar fields hi can be recovered from the yi via hi =

(cyyy)−1/3yi, we see that this ansatz will result in constant five-dimensional scalar fields.

Using (3.17) we obtain:

3

4

(
ẏ

y

)2

= −1

2
ψ̈ + ψ̇2 − 1

4
B2

0 , (3.20)

3

4

(
ẏ

y

)
= −1

2
ψ̇ +

1

4
a0. (3.21)

Eliminating the quantity (ẏ/y) from (3.20)–(3.21) we obtain an equation for the function ψ(τ):

ψ̈ − 4

3
ψ̇2 − 2

3
a0ψ̇ +

1

2
B2

0 +
1

6
a2

0 = 0.
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This is precisely the same equation as was found in [11], and so can be solved in the same way

by

e−4ψ = α3ea0τ
(

sinh(ωτ + ωβ)

ω

)3

, (3.22)

for some integration constants α and β, where the quantity ω is given by

ω2 :=
2

3
B2

0 +
1

3
a2

0. (3.23)

From this, we can integrate (3.21) to find

y(τ) = Λe
1
2a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

,

for some constant Λ, and hence the yi are given by

yi(τ) = λie
1
2a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

, (3.24)

where we have defined λi ≡ ξi/Λ. We finally need to ensure that the solution (3.24) satisfies

the original equations of motion (3.15). This fixes λi in terms of the gauging parameters gi and

other integration constants as

λi = ±3α3/2

8gi
. (3.25)

Therefore the function v appearing in the line element (2.11) is given by

v(τ) = (cλλλ)1/3e
1
2a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

. (3.26)

The signs in (3.25) should be chosen such that the function v(τ) is real and positive for all

τ > 0.

At this stage we have six independent integration constants α, β, a0, A,B0,∆ which are a

priori yet to be determined. However, following [11] we choose to set β = 0 in what follows so

that the asymptotic region is at τ = 0 and the near horizon region at τ → ∞. We can then

scale τ to set α = 1.

In order for our solution to make sense as a black brane in five dimensions, we need to

impose some physicality constraints. In particular, we require that the five-dimensional solution

generically has a finite entropy density.11 Combining the five-dimensional and three-dimensional

metric ansätze (2.11) and (3.5) we see that finite entropy density corresponds to a finite value

of v3/2u−1/2e2ψ as τ →∞ (i.e. at the horizon). To leading order we find

v3/2u−1/2e2ψ
∣∣∣
τ→∞

∼ exp

(
1

4
a0τ −

3

4
ωτ +

1

2
B0τ

)
.

11Since the range of the coordinates (x, y, x0) is infinite, the entropy itself will diverge. By ‘generic’ we mean
that we allow that the solution has a limit, which hopefully will coincide with the zero temperature limit, where
the entropy density becomes zero.
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In order that this be finite and non-zero we therefore require 3ω = a0 +2B0 which, given (3.23),

is equivalent to a0 = B0, further resulting in ω = B0. Hence, the physicality constraint further

reduces the number of independent integration constants by one.

Before moving on to study properties of the solution, we summarise the story so far. The

functions appearing in the five-dimensional line element (2.11) are given by

v(τ) = (cλλλ)1/3e
1
2B0τ

(
sinh(B0τ)

B0

) 1
2

, (3.27)

u(τ) = χ(τ)−1, χ(τ) = A cosh(B0τ) +
B

B0
sinh(B0τ), (3.28)

e−4ψ = eB0τ

(
sinh(B0τ)

B0

)3

, (3.29)

A0(τ) = −
√

6∆

∆ + 2B0A
u(τ)e−B0τdx4, (3.30)

whilst the scalar fields hi parametrising the CASR manifold are constant and given by

hi =
1

v
yi = (cλλλ)−1/3λi =

1

gi

(
clmng

−1
l g−1

m g−1
n

)−1/3
. (3.31)

We have therefore found a family of solutions to the equations of motion (3.1)–(3.4) de-

pending on three non-negative parameters B0,∆, A. Since the field equations for the three-

dimensional scalars yi(τ), v(τ), u(τ) are of second order, and our ansatz amounts to three inde-

pendent scalar fields (since the yi have been taken to be proportional), we should a priori have

expected six independent integration constants. However, as we have seen, physical regularity

conditions imposed on the lifted, higher-dimensional solution reduces the number of integration

constants by one half. This is consistent with physical solutions being uniquely characterised

by a system of first order flow equations, despite that the equations of motion are of second

order, as has been observed for other types of solutions before [36,39,42,45].

We further remark that since the physical five-dimensional scalar fields have turned out to

be constant, their only contribution is to generate an effective cosmological constant, whose

value is determined by the value of the scalar potential at the corresponding stationary point.

Since no five-dimensional gauge fields have been turned on, our solution, which is valid for any

five-dimensional vector multiplet theory, can therefore be obtained from an effective action,

which only contains the Einstein-Hilbert term together with a cosmological constant, while the

gauge fields and scalar fields have been integrated out.

A coordinate change

We introduce a new ‘radial’ (more accurately: transversal) coordinate ρ via

e−2B0τ = 1− 2B0

ρ
≡W (ρ), (3.32)
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so that the near horizon region is at ρ = 2B0, and the asymptotic region is at ρ→∞. Hence we

can use ρ to analytically continue the solution to the region 0 ≤ ρ ≤ 2B0 beyond the horizon.

In terms of ρ we find

u(ρ) = f(ρ)−1W (ρ)1/2, f(ρ) = A+
∆

ρ
, (3.33)

where we have defined ∆ := B −B0A. Moreover, we have

v(ρ) = (cλλλ)1/3(ρW )−1/2, e4ψ = ρ3W 2, (3.34)

and

A0(ρ) = −
√

6∆

∆ + 2B0A

W (ρ)

f(ρ)
dx4. (3.35)

Introducing the notation

λ̃ :=

(
1

6
cλλλ

)1/3

,

the five-dimensional line element (2.11) becomes

ds2
(5) =

ρ1/2

6λ̃
f(ρ)

(
dx0 −

√
6∆

∆ + 2B0A

W (ρ)

f(ρ)
dx4

)2

− ρ1/2W (ρ)

λ̃f(ρ)
(dx4)2

+
6λ̃2dρ2

ρ2W (ρ)
+ 6λ̃2ρ1/2(dx2 + dy2). (3.36)

3.2 Properties of the solution

Let us now turn to an investigation of the properties of the solutions constructed in Section

3.1, which we recall depend on three independent parameters: A, B0 and ∆. It is instructive to

look at the cases A > 0 and A = 0 separately. Moreover, we focus first on the situation B0 > 0,

and will comment on the B0 = 0 case later.

Solutions with B0 > 0 and A > 0

In this situation it is convenient to introduce the notation:

∆̃ :=
∆

2B0A
. (3.37)

After a suitable scaling of the boundary coordinates, and introducing the new radial coordinate

r := ρ1/4, we can bring the five-dimensional line element (3.36) to the form

ds2
(5) =

r2

l2
f(r)

dx0 −

√
∆̃

1 + ∆̃

W (r)

f(r)
dx4

2

− r2W (r)

l2f(r)
(dx4)2

+
l2dr2

W (r)r2
+
r2

l2
(dx2 + dy2). (3.38)
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Here l is defined by

l2 := 96λ̃2,

and, as we will see below, is the radius of an asymptotic AdS5 space, whilst

W (r) = 1−
r4
+

r4
, f(r) = A+

∆

r4
, r4

+ := 2B0.

In order to interpret our solution, as well as to read off the various thermodynamic quantities

associated with it, it is useful to introduce coordinates in terms of which the line element (3.38)

becomes manifestly asymptotically AdS5. We observe that the solution is invariant under the

combined rescalings

A→ λA , ∆→ λ∆ , x0 → x0

√
λ
, x4 →

√
λx4 where λ > 0 (3.39)

of parameters, with B0 invariant. Note that ∆̃ is invariant, so that for A > 0 we obtain a

two-parameter family of solutions parametrized by B0 and ∆̃. The coordinate transformation

t =
1√
A
x4, z =

√
Ax0 −

√
∆̃

A(1 + ∆̃)
x4, (3.40)

absorbs A and brings the metric (3.38) to the form of a boosted AdS Schwarzschild black brane:

ds2
(5) =

l2dr2

r2W
+
r2

l2

[
−W (ut dt+ uz dz)

2
+ (uz dt+ ut dz)

2
+ dx2 + dy2

]
. (3.41)

The constants

ut =
√

1 + ∆̃, uz =
√

∆̃, (3.42)

satisfy u2
t − u2

z = 1 and parametrise a boost along the z-direction. By taking r → ∞ one sees

that (3.41) indeed asymptotes to AdS5 with radius l. The constant ∆̃ parametrizes the boost

of the brane, while B0, as we will show below, is a non-extremality parameter and therefore

related to temperature.

This metric can be rewritten by making the following co-ordinate transformation:

r = el
−1ρ, x = ly1, y = ly2

t =
l

r2
+

(ut − uz)X − lr2
+uzT, z =

l

r2
+

(ut − uz)X + lr2
+utT , (3.43)

to obtain

ds2
(5) = e−2l−1ρdX2 + e2`−1ρ

(
2dXdT + r4

+dT
2 + (dy1)2 + (dy2)2

)
+ (1− r4

+e
−4l−1ρ)−1dρ2 . (3.44)

This metric is the 5-dimensional generalized Carter-Novotný-Horský metric constructed in [17].
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We further remark that the line element (3.41) can be further simplified by setting R = r+r,

T̃ = t/r+, X = x/r+, Y = y/r+, Z = z/r+. This rescaling corresponds to formally setting

r+ = 1 in the function W in (3.41), thus fixing the coordinate of the horizon to r = 1. However,

this reparametrization obscures the fact that r+ in (3.41) encodes the temperature, which, as

we will show later, is defined in a reparametrization invariant way.

Solutions with B0 > 0 and A = 0

Let us now look at the case where we take A = 0, so that f(ρ) = ∆/ρ in (3.36). In this case,

after suitably rescaling the boundary coordinates and introducing the radial coordinate r as

before, we find that the five-dimensional line element (3.36) becomes

ds2
(5) =

∆

l2r2

(
dx0 − r4W (r)

∆
dx4

)2

− r6W (r)

∆l2
(dx4)2 +

l2dr2

r2W (r)
+
r2

l2
(dx2 + dy2). (3.45)

Making the coordinate redefinition

x4 =
1

2
(t− z), x0 +

r4
+

2∆
x4 = t+ z,

we can bring the metric (3.45) to the form (3.41) of a boosted AdS Schwarzschild black brane.

The boost parameters are given by

ut = cosh β̂, uz = sinh β̂, (3.46)

where the quantity β̂ is defined via

e2β̂ =
4∆

r4
+

.

As in the case A > 0 we obtain a two-parameter family of black brane solutions. For A = 0

the parameters can be taken to be B0 (equivalently r+) and ∆. We remark that while both the

cases A > 0 and A = 0 can be mapped to two-parameter families of black branes, both families

cannot be related smoothly by taking A→ 0.

Solutions with B0 = 0

If we take B0 → 0 in (3.36) then the region 0 ≤ r ≤ (2B0)1/4 contracts to r = 0, which suggests

that this limit is the extremal limit. We will show later that B0 = 0 does indeed correspond to

vanishing surface gravity, and, hence vanishing Hawking temperature, and, moreover, that the

solution is a BPS solution.

For any value (zero or non-zero) of A we can then bring the metric to the form

ds2
(5)|Ext =

l2dr2

r2
+
r2

l2

[
−dt2 + dx2 + dy2 + dz2 +

∆

r4
(dt+ dz)2

]
. (3.47)
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This solution agrees with the five-dimensional extremal Nernst branes found in [24].12 We can

equivalently obtain this form of the metric from the boosted black brane (3.41) by taking the

limits

r+ → 0, ut →∞, u2
t r

4
+ → ∆ = const. (3.48)

In the extremal limit ∆ can be interpreted as a boost parameter. The vacuum AdS5 solution

is obtained by taking the zero boost limit ∆ → 0. Thus in the extremal limit ∆ determines

the mass, or more precisely the mass per worldvolume or tension of the brane. The precise

expressions for the mass and thermodynamic quantities will be calculated in Section 3.4.

The metric (3.47) displays an interesting scaling behaviour in the limit r → 0. To display

it, we introduce coordinates x−, x+ by13

t = x+ , z = x− − x+ .

Then the metric becomes

ds2
(5)|Ext =

l2dr2

r2
+
r2

l2

[(
1 +

∆

r4

)
(dx−)2 − 2dx−dx+ + dx2 + dy2

]
.

Dropping terms which are subleading in the ‘near horizon limit’ r → 0 we obtain

ds2
(5)|Ext,NH =

l2dr2

r2
+
r2

l2

[
∆

r4
(dx−)2 − 2dx−dx+ + dx2 + dy2

]
. (3.49)

This metric is invariant under the scale transformations:

x 7→ λx , y 7→ λy , r 7→ λ−1r , x− 7→ λ−1x− , x+ 7→ λ3x+ .

Thus the asymptotic metric shows a scaling invariance similar to a Lifshitz metric with scaling

exponent z = 3 (and no hyperscaling violation, θ = 0).14 The only difference is that the

coordinate x− has scaling weight −1 rather than +1. This type of generalized scaling behaviour

was observed in [23, 47, 48], where the metric (3.49) was obtained by taking a particular limit

of boosted D3-branes. We will come back to this in Section 5, where we discuss the dual field

theory interpretation of our solutions.

The boosted black brane

The boosted black brane has similarities with Kerr-like black holes, with the linear momentum

related to the boost playing a role analogous to the angular momentum. It is instructive to

work this out in some detail, following the discussion of the Kerr solution in [49].

Let us first look for the existence of static observers, who remain at constant (r, x, y, z) and

12However, the ‘heated up’ branes of [46] appear to be different from our non-extremal solutions.
13For A = 1 these coordinates agree with x0 and x4 in the extremal limit. Moreover, the near-horizon limit

preserves the symmetry that allows to set A = 1.
14Lifshitz metrics will be reviewed in Section 4.1.
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as such have velocities parallel to the Killing vector field ∂t. Therefore static observers exist in

regions where ∂t is timelike, and the limit of staticity is at the value of r where

gtt = 0⇔ −W (r)u2
t + u2

z = 0

⇔ r4 = u2
t r

4
+ ≥ r4

+ .

This “ergosurface” is always located outside the event horizon, with the trivial exception of

globally static (unboosted) spacetimes for which ut = 1 and the two surfaces overlap completely.

This is different to the rotating case where ergosurface and event horizon always coincide at

the north and south pole.

Beyond the limit of staticity there still exist stationary observers which are co-moving (more

precisely, but less elegantly ‘co-translating’) with the brane. Observers which have fixed (r, x, y)

and a constant velocity in the z-direction have world lines tangent to Killing vector fields

ξ(v) = ∂t + v ∂z ,

where the quantity v = const. will be referred to as the velocity. Such co-moving observers exist

in regions where ξ(v) is time-like. Killing vector fields of the form ξ(v) become null for values of

r where

gtt + 2vgtz + v2gzz = 0⇒ v± = − gtz
gzz
±

√(
gtz
gzz

)2

− gtt
gzz

.

Thus there is a finite range of velocities v, given by v− ≤ v ≤ v+, which co-moving observers

can attain. Note that at the limit of staticity, where gtt = 0, we find that v+ = 0. Therefore v

must be negative once the limit of staticity has been passed. The limit for co-moving observers

is reached when v− = v+ =: w, which happens at the point where

gttgzz − g2
tz = 0 .

It is straightforward to verify that this happens at the same value r+ of r where W (r+) = 0.

The limiting velocity w is given by

w = − gtz
gzz

∣∣∣∣
r=r+

= −uz
ut

, (3.50)

and can be interpreted as the boost-velocity of the surface r = r+. Since W (r+) = 0 implies

that grr(r+) = 0, it follows that on this surface outgoing null congruences have zero expansion,

see [49] for the analogous case of a rotating black hole. Consequently r = r+ is an apparent

horizon, and since the solution is stationary, an event horizon. Moreover this event horizon is

a Killing horizon for the vector field ξ = ∂t + w∂z = ∂t − uz

ut
∂z and we can interpret w as the

boost-velocity of this horizon. Observe that the limit of staticity and the limit of stationarity

are in general different, and only agree in the unboosted limit uz = 0 where we recover the AdS
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Schwarzschild black brane.

We note that there is frame dragging in our solutions, since the metric is non-static for

uz 6= 0. Indeed, since the metric coefficients are independent of t and z, the covariant momentum

components pt and pz are conserved. But even when setting pz = 0, particles have a non-

vanishing contravariant momentum component pz = gztpt 6= 0 in the z-direction. The boost

velocity of the metric varies between the horizon and infinity. It can be read off by writing the

metric in the form

ds2
(5) = −N2(r)dt2 +M2(r)(dz − v(r)dt)2 + · · ·

where the omitted terms involve dx2, dy2 and dr2. An observer at fixed r, x, y is co-moving

with the space-time if their velocity is dz/dt = v. Bringing the metric (3.41) to the above form

one finds

v = − (1−W )utuz
u2
t −Wu2

z

with limits

v −−−−→
r→r+

−uz
ut

= w ≥ −1 ,

and

v −−−→
r→∞

0 .

It is straightforward to check that for ut > 1 the boost speed |v(r)| is strictly monontonically

increasing from |v∞| = 0 at infinity to |vhorizon| = |w| = uz/ut ≤ 1 at the horizon. Thus

the boost speed is bounded by the speed of light and can only reach it at the horizon and in

the extremal limit. Note that the asymptotic AdS space at infinity is not co-moving. This

is different from Kerr-AdS, where the asymptotic AdS space is co-rotating, with implications

for the black brane thermodynamics [50–52]. In particular, we will not need to subtract a

background term, corresponding to the asymptotic AdS space, from our expressions for the

boost-velocity in order to have quantities satisfying the first law of thermodynamics. We will

come back to this later when verifying the first law.

3.3 BPS solutions

In this section, we consider the properties of the extremal solution in further detail. We begin

by considering the solution (3.47). On making the co-ordinate transformation

r = ∆
1
4 el

−1R, x = l∆−
1
4 y1, y = l∆−

1
4 y2

t =
1

2
l∆−

1
4 (X − 2T ), z =

1

2
l∆−

1
4 (X + 2T ) , (3.51)

the metric (3.47) becomes

ds2 = e−2l−1RdX2 + e2l−1R

(
2dXdT + (dy1)2 + (dy2)2

)
+ dR2 . (3.52)
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The metric (3.52) is a five-dimensional generalized Kaigorodov metric, constructed in [17], which

describes gravitational waves propagating in AdS5. The supersymmetry of this solution was

investigated in [17], where it was shown that this solution preserves 1/4 of the supersymmetry.

Furthermore, after making some appropriate co-ordinate transformations, this solution can be

shown to correspond to a class of supersymmetric solutions which appears in the classification of

supersymmetric solutions of minimal five-dimensional gauged supergravity constructed in [53].

It is straightforward to show that the null Killing vector which is obtained as a spinor bilinear

is given by ∂t − ∂z, in the co-ordinates of (3.47).

The fact that this Killing vector is null rather than timelike is related to an interesting

feature which distinguishes these BPS solutions from five-dimensional rotating BPS black holes,

namely the existence of an ergoregion, i.e. a region outside the horizon where it is not possible

for observers to remain static. Note that in the BPS limit (3.48) the limit of staticity is at

r = ∆1/4 ≥ 0 which is outside the horizon at r = 0 (unless we switch off momentum, ∆ = 0,

and go to global AdS). Therefore the ergoregion persists in the BPS limit.

For stationary BPS black holes the Killing vector obtained as a spinor bilinear is the standard

static Killing vector field ∂t, which is timelike at infinity. For rotating black holes ∂t is different

from the ‘horizontal’ Killing vector field ∂t + ω∂φ, which becomes null on the horizon. An

ergoregion exists when ∂t becomes space-like outside the horizon. However if ∂t is a bilinear

formed out of Killing spinors, supersymmetry implies that it must be either time-like or null.

Hence, rotating BPS black holes cannot have an ergoregion. Moreover it can be shown that

the event horizon of a rotating BPS black hole must be non-rotating [25]. As we have shown

above, this is different for the extremal limit of an AdS-Schwarzschild black brane, which is a

BPS wave solution in AdS5: the ergoregion persists in the BPS limit, and the (degenerate limit

of the) horizon15 moves with the speed of light, since w = −uz/ut → −1. This is consistent

with the solution being BPS, because the Killing vector obtained as a Killing spinor bilinear is

not ∂t, which is timelike at asymptotic infinity and becomes spacelike before the horizon, but

∂t − ∂z, which is null everywhere for the BPS solution. Moreover, the horizon turning into a

purely left-moving wave is consistent with the familiar string theory description of a BPS state

as a state with massless excitations moving in one direction only.

3.4 Thermodynamics

We turn to an investigation of the thermodynamics of the black brane solutions of Section 3.2.

The Hawking temperature is related to the surface gravity by T = κ
2π , where the surface gravity

κ of a Killing horizon is given by

κ2 = −1

2
∇µξν∇µξν

∣∣∣∣
r=r+

. (3.53)

15We will show later that in this limit the metric develops a singularity at the horizon, corresponding to freely
falling observers experiencing infinite tidal forces.
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Evaluating this for ξ = ∂t + w∂z, we find the Hawking temperature T :

πT =
r+

l2 ut
. (3.54)

We remark that the same result can be obtained by imposing that the Euclidean continuation

of the solution does not have a conical singularity at the horizon, see Appendix C.

In the zero boost limit ut = 1, uz = 0, we obtain the Hawking temperature of an AdS

Schwarzschild black brane. In the extremal limit (3.48), where the boost parameters go to

infinity ut, uz →∞, while r+ → 0, the Hawking temperature becomes zero, T → 0, irrespective

of whether we keep ∆ finite or not.

Since our solutions are not asymptotically flat, but rather asymptotic to AdS5, we cannot

apply the standard ADM prescription to compute the mass and linear momentum of our branes.

Instead, we use the method based on the quasilocal stress tensor [54], see also [55] for a review in

the context of the fluid-gravity correspondence. Here we simply present the result, and relegate

explicit calculational details to Appendix B. To leading order in 1/r we find that the quasilocal

stress tensor takes the form

Tµν =
r4
+

2l3r2
(ηµν + 4uµuν) + . . . , (3.55)

where ηµν is the Minkowski metric on ∂Mr which denotes the hypersurface r = const. of

our space-time, with coordinates (t, x, y, z). As indicated we have omitted terms subleading

in 1/r, since we are ultimately interested in expressions which are finite on the boundary

∂M = limr→∞ ∂Mr of space-time. Note that Tµν takes the form of the stress energy tensor of

a perfect ultra-relativistic fluid (equation of state ρ = 3p, where ρ is the energy density and p

is the pressure), with pressure proportional to r4
+ ∼ T 4. The proportionality between r+ and

T is the same behaviour as for large AdS-Schwarzschild black holes. In the absence of a boost,

it is known that AdS-Schwarzschild black branes behave thermodynamically like large (rather

than small) AdS-Schwarzschild black holes [56].

Having obtained the quasilocal stress tensor, mass and linear momentum can be computed

as conserved charges associated to the Killing vectors of our solution. Again, the details are

relegated to the appendix B. The mass, which is the conserved charge associated with time

translation invariance, is

M =
(4u2

t − 1)r4
+

2l5
V3, (3.56)

where V3 =
´

Σ
d3x is the spatial volume of the brane, computed with the standard Euclidean

metric dx2 + dy2 + dz2. Due to the infinite extention of the brane, the mass is infinite, and

to obtain a finite quantity we must either compactify the world volume directions or define

densities. We will do the latter by consistently splitting off a factor V3 from all extensive

quantities.
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Next we calculate the momentum in the z-direction, which is the conserved charge associated

to z-translation invariance. The result is

Pz = −
4r4

+utuz

2l5
V3, (3.57)

and vanishes as expected in the zero boost limit uz = 0, ut = 1. Notice that these charges

satisfy Pz = M
(
− 4utuz

4u2
t−1

)
, which resembles the motion of a non-relativistic body of mass M ,

moving at velocity vz = − 4utuz

4u2
t−1

.

Finally, we calculate the Bekenstein-Hawking entropy of the solution by integrating the pull

back of the metric over the horizon. Recalling that we are working in units where 8πG5 = 1,

we find

S =
1

4G5

ˆ
Σr=r+

d3x
√
σ = 2π

ˆ
Σr=r+

d3x
√
σ =

2πr3
+

l3
utV3 , (3.58)

where σ denotes the pullback of the metric to the surface Σr.

Using these, we can check that the thermodynamic variables satisfy the first law:

δM = TδS + w δPz . (3.59)

We remark that obtaining (3.59) is a non-trivial consistency check for the correctness of the

definition of the thermodynamical quantities, which are initially ambiguous because they require

background subtractions corresponding to renormalization of the boundary CFT [54], see also

[52] for a discussion in the context of rotating black holes in higher than four dimensions. As

noted before we do not need to apply a background subtraction for the translation velocity

w, since the asymptotic AdS5 background is not co-translating. This is different for AdS-

Kerr-type black holes, where the subtraction of the background rotation velocity is crucial for

obtaining the correct thermodynamic relations [50–52]. We also note that T,M,Pz, S which

are all defined in a reparametrization invariant way, depend on the parameter r+, which is

therefore a physical parameter, despite the fact that it could be absorbed into the coordinates

in the line element (3.41). Moreover, without the ability of varying this parameter, one could

not obtain the temperature/entropy term in the first law. We refer to appendix B.2 for further

details on this technical point.

The extremal limit of these quantities can be reached by taking r+ → 0 and ut → ∞ with

u2
t r

4
+ → ∆ fixed. In this case we find that the entropy density s := S/V3 vanishes in the

extremal limit, s→ 0 as T → 0. Therefore our solutions satisfy the strong version of the Nernst

law, and will be referred to as Nernst branes.16 Moreover, since in this case w = −1, we find

M = |Pz|, which is of course the saturation of the BPS bound, as it must be given the results of

Section 3.3. As already remarked earlier, in the extremal limit the boost parameter ∆ controls

16Incidentially, this version of the Nernst law is due to Planck, but clearly ‘Planck brane’ would be a bad
choice of terminology.
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the mass, and ∆→ 0 is the limit where the solution becomes globally AdS5.

We can eliminate the quantities r+ and ut in favour of the thermodynamical variables T

and w via

ut =
1√

1− w2
, uz = − w√

1− w2
, r+ =

l2(πT )√
1− w2

.

In terms of T and w the mass of the solution is given by

M(T,w) =
l3

2
V3

(
3 + w2

(1− w2)3

)
(πT )4. (3.60)

Hence, we see that the heat capacity

CT ≡
∂M

∂T

∣∣∣∣
w

> 0, (3.61)

is positive, and the solution is thermodynamically stable. This is as expected, at least in

the absence of a boost, since it is well known that AdS-Schwarzschild black branes behave

thermodynamically like large AdS-Schwarzschild black holes [56]. As we see from (3.60), the

introduction of a boost does not introduce thermodynamic instablility.

Expressing the entropy in terms of (T,w) we find

S(T,w) = 2πl3V3
(πT )3

(1− w2)2
. (3.62)

Note that turning off the boost uz = 0, which corresponds to w = 0, we have S ∼ T 3, which is

the scaling behaviour expected for an AdS5 Schwarzschild black brane.

Indeed we can use (3.62) to investigate the behaviour of S as a function of T in both the

high temperature and low temperature limits. The limit of high temperature (equivalently

small boost velocity) is

uz → 0, r+ →∞, u2
zr

4
+ → ∆ = const.

This corresponds to |w| � 1, and so we see from (3.62) that S ∼ T 3. The limit of low

temperature (equivalently boost velocity approaching the speed of light) is the extremal limit

ut →∞, r+ → 0, u2
t r

4
+ → ∆ = const.

In this case, one can see that 1 − w2 ∼ T 4/3, and so the entropy scales like S ∼ T 1/3. This is

the behaviour predicted for five-dimensional lifts of four-dimensional Nernst branes [11]. We

will comment further on the thermodynamic properties of our solutions in Section 5.

3.5 Curvature properties of five-dimensional Nernst branes

One motivation of the present work is the singular behaviour of the four-dimensional Nernst

branes found in [11]. We will show in Section 4 that the five-dimensional Nernst branes found
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above are dimensional lifts of these four-dimensional Nernst branes. To investigate the effect of

dimensional lifting on such singularities, we now examine the behaviour of curvature invariants

and tidal forces of the five-dimensional solutions. From both the gravitational point of view,

and with respect to applications to gauge-gravity dualities, one would like the solutions to have

neither naked singularities, nor null singularities (singularities coinciding with a horizon), while

the presence of singularities hidden behind horizons is acceptable. In practice, the presence

of large curvature invariants or large tidal forces will also be problematic, given that the su-

pergravity action we start with needs to be interpreted as an effective action. Therefore large

curvature invariants or tidal forces are indications that this effective description breaks down

due to quantum or, assuming an embedding into string theory, stringy corrections. This might

also limit the applicability of gauge-gravity dualities to only part of the solution, where the

corrections remain sufficiently small.

Curvature invariants

For our five-dimensional metric (3.41) we compute the Kretschmann scalar and Ricci scalar to

be

K =
2
(
9r8

+ − 24r4
+r

4 + 20r8
)

r8l4
, R =

4
(
−5r4 + 3r4

+

)
r4l2

. (3.63)

Note that these only depend on the temperature T ∼ r+ and the curvature radius l of the

AdS5 ground state. For the extremal solution (r+ = 0) both curvature invariants take constant

values which agree with those for global AdS5:

KAdS5 =
2d(d− 1)

l4
=

40

l4
, RAdS5 = −d(d− 1)

l2
= −20

l2
.

For the non-extremal solution the curvature invariants tend to the AdS5 values asymptotically,

but will blow up as r → 0. Since this is behind the horizon, there are no naked or null

singularities related to the curvature invariants of five-dimensional Nernst branes.

Tidal Forces

Even if all scalar curvature invariants are finite, there might still be curvature singularities

related to infinite tidal forces. Such curvature singularities can be found by computing the

components of the Riemann tensor in a ‘parallely-propogated-orthonormal-frame’ (PPON) as-

sociated with the geodesic motion of a freely-falling observer. Following [26] they are called

pp singularities, in contrast to sp singularities, where a scalar curvature invariant becomes

singular. While such singularities are often considered milder than those associated to cur-

vature invariants, they are nevertheless genuine singularities and have drastic physical effects

(‘spaghettification’) on freely falling observers.

The details of this construction for the five-dimensional extremal solution are relegated to
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Appendix D. We only need to consider the extremal solution, since non-extremal solutions are

manifestly analytic at the horizon r+ > 0. From Table 3 in Appendix D we observe that the

non-zero components of the Riemann tensor in the PPON all have near horizon behaviour of

the form

R̃abcd ∼ rα with α ≤ 0 , (3.64)

with α < 0 for all but one independent non-vanishing component. Hence, as the observer

approaches the horizon of the extremal brane (r → 0) these components will diverge, resulting

in infalling observers being subject to infinite tidal forces. This is the same behaviour as

observed in four dimensions [11], and seems to be the price for having zero entropy. It is an

interesting question whether stringy or other corrections could lift this singularity, and if so,

whether it is possible to maintain zero entropy.

4 Four-dimensional Nernst branes from dimensional re-

duction

4.1 Review of four-dimensional Nernst branes

We now want to dimensionally reduce our five-dimensional Nernst branes and compare the

resulting four-dimensional spacetimes to those found in previous work [11]. Let us therefore

review the relevant features, emphasising the problems that we want to solve. Four-dimensional

Nernst branes depend on three parameters: the temperature T , the chemical potential µ and

one electric charge Q0. Due to Dirac quantisation17 charge is discrete, and the solution depends

on two continuous parameters. The asymptotic geometries, both at infinity and at the horizon,

are of hyperscaling violating Lifshitz (hvLif) type:

ds2
(d+2) = r−2(d−θ)/d

(
−r−2(z−1)dt2 + dr2 +

2∑
i=1

dx2
i

)
. (4.1)

Here t is time, r parametrizes the direction transverse to the brane, and xi, i = 1, . . . , d are the

directions parallel to the brane (with d = D−2 in D spacetime dimensions). For θ = 0 the line

element (4.1) is invariant under rescalings

(t, r, xi) 7→ (λzt, λr, λxi) .

The parameter z, which measures deviations from ‘relativistic symmetry’ (due to time scaling

different from space) is called the Lifshitz exponent. For θ 6= 0 the metric is not scale invariant

but still scales uniformly, and θ is known as the hyperscaling violating exponent.

For four-dimensional Nernst branes the geometry at infinity is independent of the temper-

17The four-dimensional theory admits both electric and magnetic charges, though for the solution in question
only one electric charge has been turned on.
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ature. For finite chemical potential it takes the form of conformally rescaled AdS4, which is of

the above type, with z = 1, θ = −1. Moreover, the curvature scalar goes to zero R(4) → 0,

while the scalar fields zA, A = 1 . . . n
(4)
V run off to infinity zA → ∞. In contrast, for infinite

chemical potential the geometry at infinity is asymptotic to hvLif with z = 3 and θ = 1. The

behaviour of curvature and scalars is precisely the opposite as previously: the curvature scalar

diverges R(4) → ∞, while the scalar fields go to zero zA → 0. The geometry at the horizon is

independent of the chemical potential, but depends on the temperature. For zero temperature

the asymptotic geometry is again hvLif with z = 3, θ = 1, but approaching the ‘opposite end’

of this geometry, so that the curvature scalar goes to zero R(4) → 0. While there is no sp cur-

vature singularity there remains a pp curvature singularity at the horizon, that is, freely falling

observers experience infinite tidal forces. Simultanously the scalar fields go to infinity zA →∞.

This type of behaviour can be considered as a generalized form of attractor behaviour [6]. For

finite temperature the geometry takes the expected form for a non-extremal black brane, the

product of two-dimensional Rindler space with R2. The scalars and the curvature take finite

values, so that the solutions are regular at the horizon for non-zero temperature.

The only element of hvLif holography that we will use is the entropy–temperature relation

S ∼ T (d−θ)/z ,

valid for field theories with hyperscaling violation [12].

Since the low-temperature asymptotics of the exact entropy–temperature relation of four-

dimensional Nernst branes is S ∼ T 1/3, which matches the scaling properties of the asymptotic

zero temperature near horzion hvLif geometry with θ = 1, z = 3, gauge/gravity duality implies

the existence of a corresponding three-dimensional non-relativistic field theory with this scaling

behaviour. As the solution is charged, the global solution should describe the RG flow starting

from a UV theory corresponding to asymptotic infinity, and ending with this IR theory. Identi-

fying this UV theory turned out to be problematic: the solution at infinity jumps discontinously

between finite and infinite chemical potential, and is singular in either case. The more likely

candidate (having no curvature singularity) is the conformally rescaled AdS4, which still does

not look like a ground state, due to the run-away behaviour of the scalars. Moreover, while

the geometric scaling properties indicate an entropy–temperature relation of the form S ∼ T 3,

the high temperature asymptotic of the four-dimensional Nernst brane solution is S ∼ T . As

discussed before, this lead to the conjecture that the solution decompactifies at infinity, and

needs to be understood from a five-dimensional perspective.

4.2 S1 bulk evolution

To relate five-dimensional Nernst branes to four dimensions, we make the spacelike direction

x0 compact, i.e. we identify x0 ∼ x0 + 2πr0. Clearly then, to understand the four-dimensional
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r

R0
phys(r)

A = 0 (|μ| = ∞)

A ≠ 0 (|μ| < ∞)

Pcrit

Figure 1: Plot showing the evolution of the compactification circle throughout the five-
dimensional bulk.

properties, it is crucial to first understand the behaviour of the x0 circle. Writing (3.38) as18

ds2
(5) = e2σ(dx0 +A0

4dx
4)2 + e−σds2

(4),

with

e2σ =
r2f(r)

l2
, (4.2)

we find the four-dimensional line element

ds2
(4) =

r

l

{
− r2W (r)

l2f(r)1/2
dt2 + f(r)1/2 l2 dr2

r2W (r)
+
r2

l2
f(r)1/2(dx2 + dy2)

}
, (4.3)

after identifying x4 ≡ t. From (4.2) we can read off the behaviour of the physical (geodesic)

length R0
phys of the compactification circle:

(R0
phys)

2 = (2πr0)2e2σ(r) = (2πr0)2

(
Ar2

l2
+

∆

r2l2

)
. (4.4)

Thus the geodesic length of the compactification circle S1 varies dynamically along the trans-

verse direction, parametrized by r, of the four-dimensional spacetime, as shown in Figure 1.

Notice from (4.4) that for A > 0 there are two competing terms, resulting in decompactifi-

18As it stands, (3.38) is specialized to the case A > 0 since it involves the variable ∆̃ = ∆
2B0A

. However,

using (3.35), it is possible to write (3.38) in terms of a general Kaluza-Klein vector, valid for both A > 0 and
A = 0. This then allows the reduction of both cases in parallel, leading to (4.3).
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cation both for r → ∞ and for r → 0. The latter decompactification is only reached in the

extremal limit, since otherwise we encounter the horizon at r+ > 0. This implies that in the

non-extremal case the near horizon solution will still depend on the parameter A, while in

the extremal case the near horizon solution becomes independent of A. The insensitivity of

the extremal near horizon solution to changes of parameters which determine the asymptotic

behaviour at infinity, in our case A, can be viewed as a version of the black hole attractor mech-

anism. Making the solution non-extremal results in the loss of attractor behaviour by making

the near horizon solution sensitive to the asymptotic properties of the solution at infinity. Of

course, the four-dimensional scalars run off to infinity instead of approaching finite fix-point

values, but they do so in a particular, fine-tuned way, which leads to a consistent lifting of the

near horizon geometry five dimensions. A remarkable feature of solutions with A > 0 is the

existence of a critical point, Pcrit, where the compactification circle reaches a minimal size at

r4
crit = ∆/A. In contrast, for A = 0, this critical point does not exist and so, whilst the circle

continues to decompactify as r → 0 in the extremal case, it now shrinks monotonically with

increasing r, ultimately becoming a null circle19 of zero size for r → ∞. This fundamentally

different behaviour of the S1 means we must treat the dimensional reduction of the A > 0 and

A = 0 cases separately in what follows. Additionally, we clearly see that A is the parameter

responsible for the asymptotic behaviour at infinity from a five-dimensional point of view. This

resembles the role played by the parameter h0 in the four-dimensional solutions of [11]: this

connection will be made manifest in the following subsections.

In the case A > 0, the compactification introduces a new continuous parameter, the para-

metric radius r0 of the circle. We now observe that the identification x0 ' x0 +2πr0 breaks the

scaling symmetry (3.39), which made the parameter A irrelevant for five-dimensional (uncom-

pactified) solutions. For A > 0 there is a circle of minimal size at r4
crit = ∆/A, with geodesic

size R0
crit given by

(R0
crit)

2 = 8π
r2
0

l2

√
∆A .

The size of this minimal circle depends only on the combination r2
0

√
A and is therefore invariant

under any increase in A that is compensated for by a reduction in r0 and vice-versa. This ability

to trade r0 for A means that A can be used as the physical parameter controlling the minimal

circle size, whilst r0 becomes redundant. It is natural to set r0 =
√
A, as this is precisely what is

needed such that the expression for the four-dimensional charge, Q0, calculated later in (4.17),

is independent of the compactification radius, which is natural for a quantity which was defined

in [11] in a purely four-dimensional context.

In the case A = 0, there is no such invariant length and we can see this in a number

of ways. Firstly, the A → 0 limit pushes r4
crit = ∆

A → ∞ and so no minimal circle exists.

Secondly, with A = 0, the geodesic size of the compactification circle is found from (4.4)

19The norm-squared of the tangent vector ∂x0 goes to zero in this limit.
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to be (R0
phys)

2 = (2πr0)2∆
r2l2 and depends only on ∆; since this is already a parameter of the

five-dimensional solution, there is nothing else to be accounted for and no need for additional

parameters. One can try to obtain an invariant length from the size of the circle on the

horizon, R0
phys(r+), which, assuming non-extremality, will at least be finite. However, it is clear

from (4.4) that this will be a function of both ∆ and r+, which again are already existing

parameters of the five-dimensional A = 0 solution.

4.3 Dimensional reduction for A > 0

4.3.1 Four dimensional metrics and gauge fields

In [11] a family of four-dimensional Nernst branes was found, which depend on one electric

charge Q0 and two continuous parameters B
(4d)
0 and h0, which can be expressed alternatively

in terms of temperature T (4d) and chemical potential µ. It was also observed that the four-

dimensional solutions with finite chemical potential exhibited a specific singular behaviour in

the asymptotic regime, which suggested to be interpreted as a decompactification limit. Given

the behaviour of the compactification circle, the natural candidate for a lift of four-dimensional

Nernst branes with finite chemical potential is the A > 0 family of five-dimensional Nernst

branes.

We begin by comparing the four-dimensional Nernst brane solutions with finite chemical

potential (h0 6= 0) as found in [11] to the four-dimensional metric in (4.3) obtained by dimen-

sionally reducing our five-dimensional solution with A > 0. Setting ρ = r4 in (3.30) of [11]

gives:

ds2
4 = −H−1/2W (4d)r3dt2 +

16H1/2

W (4d)

dr2

r
+H1/2r3(dx2 + dy2) , (4.5)

where W (4d) = W (4d)(r) = 1− 2B
(4d)
0

r4 and

H(r) = C

[
Q0

B
(4d)
0

sinh
B

(4d)
0 h0

Q0
+
Q0e

−B(4d)
0 h0/Q0

r4

]
=: CH0(r) . (4.6)

Here Q0 parametrizes the four-dimensional electric charge, the continuous parameter h0 6= 0

corresponds to a chemical potential µ, with |µ| <∞20, and the continuous parameter B
(4d)
0 ≥ 0

corresponds the temperature T (4d) ≥ 0. The constant C is determined by the choice of a

prepotential and a gauging of the four-dimensional theory. More precisely, it is determined

by the cubic coefficients cijk and gauging parameters gi, but since we are assuming that this

solution can be lifted to five-dimensions, these are the same parameters that enter into our

five-dimensional theory in (2.1). The precise form of C can be read off from the unnumbered

equation between (3.30) and (3.31) in [11]. At this point we anticipate that the functions W (4d)

20Due to the specific choices made for certain signs, the chemical potential will turn out to be negative. This
is correlated with a choice of sign for the electric charge. There is another branch of the solution, which we
don’t give explicitly, where these signs are reversed.
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and W in the four- and five-dimensional solutions can be identified, which allows us to drop the

superscrips ‘4d’ on B0 and T . Since we can no longer rescale the coordinate r, matching the

coefficients of dr2 between the metrics (4.3) and (4.5) fixes the relation between the functions

f(r) and H(r) to be

l2f = 162H = 162CH0 .

Then the remaining metric coefficients match if we rescale t, x, y by constant factors involving

l.21 Writing out the functions f and H and comparing, we obtain:

162C
Q0

B0
sinh

B0h0

Q0
= l2A , (4.7)

162CQ0e
−B0h0/Q0 = l2∆ .

While the five-dimensional line element is non-static, the four-dimensional one is static, but as

an additional degree of freedom we have a Kaluza-Klein gauge field, given by

A0
t (r) = ζ0 = − 1√

2
A0

4 =

√
6√
2

(
uz
ut

)
W (r)

f(r)
= −
√

3wW (r)

f(r)
. (4.8)

Here we use the definitions and conventions of Section 2.2, and with regard to four-dimensional

quantities, we use the conventions of [29], which were also used in [11].

By matching the expression for ζ̇0 given by (3.12) with the τ -derivative of (3.38) of [11], we

can identify the Kaluza-Klein vector with the four-dimensional gauge field provided that√
3∆(∆ + 2B0A)

A2
= − B2

0

2Q0 sinh2 B0h0

Q0

, (4.9)

1 +
∆

B0A
= coth

B0h0

Q0
.

From this we can find

Q0 = −1

6

√
3∆(∆ + 2B0A) , (4.10)

h0 =
Q0

B0
arcoth

(
1 +

∆

B0A

)
, (4.11)

which expresses the four-dimensional parameters Q0, h0 in terms of the five-dimensional param-

eters A,∆, B0. Comparing (4.7) to (4.9) we find that these relations are mutually consistent

provided that

162C = −2
√

3l2 . (4.12)

This equations relates the overall normalizations of metrics (4.3) and (4.5) and of the underlying

vector multiplet actions.

21 Alternatively, we could absorb l into r, but then by comparing the functions W we will conclude that the
respective parameters B0 differ by a factor l4. Given the relation of B0 to the position of the event horizon and
to temperature, we prefer not to do this.
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The four-dimensional chemical potential is given by the asymptotic value of the gauge field

At, which is chosen such that At(r+) = 0, as explained in Appendix F. Having matched the five-

dimensional Kaluza-Klein vector with the four-dimensional gauge field of [11], the corresponding

expressions for the chemical potential must also match.22 For reference, we provide the following

expression in terms of both four- and five-dimensional parameters,

µ =
1

2

B0

Q0

[
coth

B0h0

Q0
− 2

]
=

∆

2Q0A
= −
√

3

A

√
∆

∆ + 2B0A
, (4.13)

where we used (4.9). Notice from (4.10) that Q0 < 0 which then forces h0 < 0 by (4.11),

which is consistent with the remark in [11] that sign(h0) = sign(Q0). Moreover we observe that

Q0 < 0 implies µ < 0. This reflects the correlation in the signs of the charge Q0 and of the

chemical potential µ. We have, for concreteness and simplicity, restricted ourselves to solutions

where ζ̇0 > 0, which have turned out to correspond to negative charge and negative chemical

potential. Conversely, solutions with ζ̇0 < 0 will carry positive charge and positive chemical

potential. This is consistent with the fact that in relativistic thermodynamics the chemical

potentials of particles and antiparticles differ by a minus sign.

For completeness we note a few further signs which are implied by our decisision to focus

on solutions with ζ̇0 < 0 (and, hence, ζ0 > 0). From (4.7) we deduce that the four-dimensional

constant C must be negative, C < 0, which explains the minus sign in (4.12). Furthermore, it

is clear from (4.6) that H0(r) < 0 such that the harmonic function H(r) > 0, which we need in

order that the roots of H, which appear in our expression for the solution, are real.

4.3.2 Momentum discretization, charge quantization and parameter counting

Since the reduction is carried out over the x0 direction, it is instructive to calculate the Killing

charge associated to the Killing vector ∂0 = ∂/∂x0. For A > 0, (3.40) tells us this is related to

the Killing vector ∂z of the five-dimensional spacetime via

∂0 =
√
A∂z.

Since the charge associated with ∂z is the brane momentum (3.57), the Killing charge corre-

sponds to momentum in the x0 direction, and can be determined as follows

P 0 =
√
APz ' −

2√
A

√
∆(∆ + 2B0A) , (4.14)

where we have omitted V3 and l for simplicity. The periodicity of the x0 direction implies that

momentum takes discrete values,

P 0 ' N

r0
=

N√
A
, N ∈ Z− ∪ {0} , (4.15)

22This can be seen explicitly by applying (4.9) to (3.39) in [11] and comparing to the asymptotic value of (4.8).
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where we have taken into account that P 0 ≤ 0. Rearranging this as

N '
√
AP 0 ' N ' −2

√
∆(∆ + 2B0A) (4.16)

and comparing to (4.10), we see explicitly how the quantization of the internal momentum

implies the quantization

Q0 '
√
AP 0 ' N, N ∈ Z− ∪ {0} (4.17)

of the four-dimensional charge. Note that while the spectrum of P 0 changes with the radius

r0 =
√
A of the compactification circle, the four-dimensional electric charge Q0 is independent

of it. As already mentioned before, P 0 and Q0 being negative results from choosing ζ0 positive,

and solutions with positive P 0 and Q0 can be obtained by flipping signs in (3.13). Our choice of

signs is consistent with the choices made in [11], in particular the same anti-correlation between

the signs of A0
t = ζ0 and Q0 can be observed in the equation above (3.38) of [11].

Let us end this discussion by comparing the number of parameters describing the Nernst

branes in different dimensions. Five-dimensional Nernst branes are parametrized by three con-

tinuous paramters (A,B0,∆), but for A > 0 we have the scaling symmetry (3.39), which tells us

that A is redundant, and that we can parametrize solutions by the two independent and contin-

uous parameters (B0, ∆̃), which then correspond to temperature and boost momentum. Upon

compactification a new length scale is introduced that breaks the scaling symmetry present in

five dimensions. Consequently, the four-dimensional solution picks up an extra parameter; we

need to specify the three independent and continuous parameters (B0,∆, A) in order to com-

pletely define the metric (4.3). In terms of physical parameters, the four-dimensional solution

depends on temperature, charge and chemical potential (T,Q0, µ). These are all independent

but, as we have seen, since the momentum has a component in the direction we compactify

over, it becomes discrete, which corresponds directly to the discretization of four-dimensional

electric charge. As such, the five-dimensional solution involves two independent and contin-

uous thermodynamic parameters whilst the four-dimensional solution has three independent

parameters, two of which are continuous and one of which is discrete.

4.4 Dimensional reduction for A = 0

The two parameter family of four-dimensional Nernst branes found in [11] exhibits disconti-

nuities in the asymptotic behaviour of both the geometry and the scalar fields when taking

the limit h0 → 0, or equivalently, |µ| → ∞. This discontinuity can be accounted for by the

discontinuous asymptotic behaviour of the compactification circle in the limit A → 0 as seen

in Figure 1. We should therefore expect that the infinite chemical potential four-dimensional

solutions of [11] with h0 = 0 can be recovered from the A = 0 five-dimensional solution with

one dimension made compact.
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To demonstrate this relationship we take the four-dimensional Nernst brane metric (4.5)

obtained in [11] and set h0 = 0 in (4.6) which reduces the function H(r) to

H(r) =
CQ0

r4
.

Substituting this back into (4.5) gives the following metric

ds2
4 = −C1/2Q

−1/2
0 W (4d)r5dt2 +

16C1/2Q
1/2
0 dr2

W (4d)r3
+ C1/2Q

1/2
0 r(dx2 + dy2). (4.18)

On the other hand, the dimensional reduction of the A = 0 class of five-dimensional Nernst

branes gives

ds2
4 = − r5W

∆1/2l3
dt2 +

l∆1/2

r3W
dr2 +

r∆1/2

l3
(dx2 + dy2), (4.19)

where we have used (4.3) with A = 0. Again we identify the functions W (4d) and W appearing

in the above metrics, which means the parameters B0 and T will be the same in both cases. As

before, this prevents rescaling of the coordinate r and then, by comparing dr2 terms in (4.18)

and (4.19), we establish the following relationship between four- and five-dimensional quantities

162CQ0 = l2∆. (4.20)

Again, the remaining metric coefficients can be made to match by rescaling t, x, y by constant

factors involving l. Following the same procedure as in Section 4.3.1, we match the gauge field

and Kaluza-Klein vector by comparing expressions for ζ̇0. Specifically, we match (3.12) with

the τ -derivative of (3.38) in [11]. The two are equivalent provided that

Q0 = − ∆

2
√

3
, (4.21)

which expresses the four-dimensional electric charge in terms of the five-dimensional boost

parameter ∆. This is a much simpler expression than in the A > 0 case and we observe that

it matches the A → 0 limit of (4.11). Considering the discontinuities we have encountered

previously when taking A→ 0 limits, this seems at first surprising but just reflects that Q0 is

a well defined paramater for the four-dimensional solutions of [11], for any choice of µ and T .

Having established Q0 < 0, we see from (4.11) that A → 0 corresponds to h0 → 0−, and thus

from (4.13) that µ→ −∞. Lastly, we can substitute (4.21) into (4.20) to find the relationship

between the overall normalizations of the metrics (4.18) and (4.19),

162C = −2
√

3l2. (4.22)

Clearly this requires C < 0 as before and, in fact, is exactly the same relationship as for the

A > 0 case in (4.12), which is expected since C and l are only sensitive to the four- and five-

dimensional multiplet actions respectively, and these are indpendent of A. Again, since we
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have matched the gauge fields by comparing ζ̇0, the chemical potentials must match and this is

indeed the case; using the asymptotic value of (4.8) with A = 0, we find µ = −∞ which agrees

with the negatively charged, h0 = 0 solutions in [11].

The parameter counting becomes simpler in the A = 0 case. Five-dimensional Nernst branes

are parameterized by two independent and continuous parameters (B0,∆), or equivalently

temperature and momentum. However, as we have seen in Section 4.2, no new length scale

is introduced by the reduction and consequently, the four-dimensional solution obtained via

dimensional reduction also depends on exactly two independent parameters, (B0,∆), which are

sufficient to completely determine (4.18) since A = 0 is fixed. Using (4.21), these are equivalent

to (T,Q0) with µ = −∞. The difference between the five-dimensional and four-dimensional

parameters is that the S1 causes charge quantization. This means that whilst both B0 and ∆

are continuous in five dimensions, reducing to four dimensions forces one parameter, namely

Q0 ∼ −∆, to become discrete.

One difference between the A = 0 solution and the A > 0 solution is that for the A =

0 solution the compactification circle has no critical value. Therefore we cannot relate the

momentum P 0 to the electric charge Q0 using r0 as a reference scale. This is not a problem

since we could relate Q0 to five-dimensional quantities through (4.21), and, moreover, we have

seen that the relation between Q0 and five-dimensional quanities has a well defined limit for

A → 0. A related feature of the A = 0 solution is that compactification circle has no minimal

size, and contracts to zero for r →∞. That means that there is a region in this solution, where

the circle has sub-Planckian, or sub-stringy size. While this is problematic for an interpretation

as a four-dimensional solution, the lifted five-dimensional solution is simply AdS5, and can be

decribed consistently within five-dimensional supergravity.

4.5 Curvature properties of four-dimensional Nernst branes

The four-dimensional solutions with A > 0 and A = 0, obtained in Sections 4.3 and 4.4, exactly

match the h0 < 0 and h0 = 0 solutions of [11] respectively. In [11] these four-dimensional

solutions were observed to be hyperscaling-violating Lifshitz metrics. It is known from [16] that

such solutions suffer from various curvature singularities, and we shall now investigate this by

computing the singular behaviour of the metrics (4.3) and (4.19).

Curvature Invariants

As with the five-dimensional spacetimes in Section 3.5 we can determine the presence of curva-

ture singularities of our four-dimensional solutions by looking at the Kretschmann scalar and

Ricci scalar associated to the metrics (4.3) and (4.19). Indeed, since any singular behaviour in

the curvature will already be present for the extremal solutions, we will concentrate only on

38



the case r+ = 0. The curvature invariants are calculated (using Maple) to be

KA>0
4 =

r2
(
351A4r16 + 1476A3r12∆ + 2586A2r8∆2 + 1284Ar4∆3 + 959∆4

)
4L2 (Ar4 + ∆)

5 ,

RA>0
4 = −

3
(
15A2r8 + 34Ar4∆ + 15∆2

)
2
√

Ar4+∆
r4 (Ar4 + ∆)

2
rL

,

KA=0
4 =

959r2

4∆L2
, RA=0

4 = − 45r

2
√

∆L
. (4.23)

For A > 0, or equivalently |µ| < ∞, we find that the Ricci scalar behaves as R ∼ r−1

for large r, and R ∼ r for r → 0, whilst the Kretschmann scalar scales as K ∼ r−2 and

K ∼ r2 in these respective regions. Hence, the curvature invariants will remain finite along the

solution. However, for the A = 0 solution we will still have the same behaviour at r → 0, but

asymptotically we find R ∼ r and K ∼ r2. We therefore have a naked curvature singularity as

we approach the boundary of the spacetime.

Tidal Forces

In order to investigate whether the four-dimensional solutions of [11] admit infinite tidal forces

in the near-horizon regime we will follow the analysis of [16], albeit considering a slightly

simpler set-up in which the infalling observer is moving only in the radial direction i.e. has zero

transverse momentum. The technical details of this procedure can be found in Appendix E.

Our results in Tables 4 and 5 show that, for both A > 0 and A = 0, there exist components

of the Riemann tensor, as measured in the PPON, that diverge as r → 0. This indicates that the

radially infalling observer will experience infinite tidal forces at the extremal horizon, r+ = 0.

As before, tidal forces will remain finite on non-extremal horizons, r+ > 0.

4.6 Curing singularities with decompactification

A summary of the singular behaviour of our four- and five-dimensional solutions can be found

in Tables 1 and 2. Notice that since B0 and A control the near horizon and asymptotic

geometries respectively, we can use these to catalogue any singularities. We will now explain

how the singularities present in the four-dimensional hyperscaling-violating Lifshitz solutions

of Section 4.5, except those related to infinite tidal forces at extremal horizons, can be removed

by dimensional lifting to the asymptotically AdS solutions of Section 3.5.

4.6.1 Curvature invariants

Dimensional reduction relates the five-dimensional Ricci scalar to its four-dimensional counter-

part by23

R5 ∼ eσR4.

23Similarly, the Kretschmann scalars are related by K5 ∼ e2σK4. The appearence of the second power of the
dilaton reflects the fact that the Kretschmann scalar is quadratic in the curvature.
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B0, h0
Near Horizon Asymptotic

Curvature
Singularity

∞
Tidal Forces

Curvature
Singularity

∞
Tidal Forces

B0 = 0, A = 0 × X X ×
B0 = 0, A > 0 × X × ×
B0 > 0, A = 0 × × X ×
B0 > 0, A > 0 × × × ×

Table 1: Summary of singular behaviour of four-dimensional Nernst brane.

B0, A
Near Horizon Asymptotic

Curvature
Singularity

∞
Tidal Forces

Curvature
Singularity

∞
Tidal Forces

B0 = 0, A = 0 × X × ×
B0 = 0, A > 0 × X × ×
B0 > 0, A = 0 × × × ×
B0 > 0, A > 0 × × × ×

Table 2: Summary of singular behaviour of five-dimensional Nernst brane.

As can be seen from Table 1 and Table 2, the only situation where we encounter a curvature

singularity is the asymptotic regime of the four-dimensional solution with h0 = 0, or equiva-

lently A = 0. In this instance we have R4 ∼ r from (4.23) whilst eσ ∼ 1/r from (4.2) resulting

in R5 being asymptotically constant and exactly equal to the value of global AdS5 as seen in

Section 3.5. Recalling that the dilaton eσ measures the geodesic length of the x0 circle, we

can now account for the presence of an asymptotic curvature singularity in this class of four-

dimensional Nernst branes. Specifically, the four-dimensional, µ = −∞, asymptotic curvature

singularity emerges from a ‘bad slicing,’ of the parent AdS5 hyperboloid by a circle that gets

pinched at infinity. It was shown previously, that the independent four-dimensional scalars are

all proportional to each other, see formula (3.29) in [11]. It was also observed that for infi-

nite chemical potential, these scalars approach zero asymptotically. From the five-dimensional

point of view, the single profile of the four-dimensional scalars determines the profile of the

Kaluza-Klein scalar. Therefore the four-dimensional scalars approaching zero corresponds to

the shrinking of the compactification circle. When combining this with the singular behaviour

of the four-dimensional metric, we obtain AdS5.

In the A > 0, or equivalently |µ| <∞, case the four-dimensional solution of [11] is asymptot-

ically conformal to AdS4, or CAdS4 for short. We see from (4.23) that the curvature invariants

of CAdS4 behave as R4 ∼ 1/r and vanish asymptotically. At the same time, this is compen-

sated by eσ ∼ r from (4.2), meaning the circle now blows up at large r such that R5 remains

asymptotically constant and equal to RAdS5 . Thus, in this case the asymptotic behaviour of

the four-dimensional metric and scalars is reversed compared to the A = 0 case, but still leads

to the same five-dimensional asymptotic geometry after lifting.
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4.6.2 Tidal forces

As can be seen from Tables 1 and 2, tidal forces are asymptotically irrelevant24 and so we are

only concerned with the situation near the horizon. It is clear that infinite tidal forces are

present at the horizon of the extremal Nernst brane in four-dimensions, and are not removed

by dimensional lifting. This seems to be the price for obtaining the strong version of Nernst’s

law.

5 Summary, Discussion, and Outlook

5.1 The five- and four-dimensional perspective, and looking for a field

theory dual

Let us summarize and discuss our results. Starting from FI-gauged five-dimensional supergrav-

ity with an arbitrary number of vector multiplets, we have obtained a two-parameter family of

Nernst branes, labelled by temperature and momentum. These solutions interpolate between

AdS5 and an event horizon, and have an entropy–temperature relation interpolating between

S ∼ T 3 at high temperature/low boost and S ∼ T 1/3 at low temperature/high boost. The

relation S ∼ T 3 is consistent with the scaling properties of AdS5. Given that we are working

within five-dimensional gauged N = 2 supergravity, the dual UV field theory should be a con-

formally invariant four-dimensional N = 1 field theory. Since the metric is the same as in the

duality between gauged N = 8 supergravity and N = 4 Super Yang Mills, one might expect it

to be a conformally invariant N = 1 Super Yang Mills theory or a deformation thereoff, but

without having a higher dimensional embedding which allows one to understand the role of the

parameters cijk and gi of the gauge theory, we can’t say much more.

We have seen how the five-dimensional lift of four-dimensional Nernst branes removes all

the singularities at asymptotic infinity as well as the mismatch between geometrical and ther-

modynamic scaling relations. To understand the variation of the compactification circle along

the transverse direction, which from the four-dimensional point of view is encoded in the scalar

fields, is crucial. The apparently singular behaviour of the four-dimensional geometry is exactly

compensated for by the singular behaviour of the scalars, or, put differently, by the behaviour of

the circle one has to add to obtain asymptotically AdS5. Moreover, the compactification circle

also accounts for the four-dimensional chemical potential, which has no counterpart in the un-

compactified five-dimensional solution. However, once we decide to make the boost direction

compact the dynamics forces the circle to expand at both ends, and the resulting minimum

introduces a new parameter which we can relate to the chemical potential. As proposed in [11],

we can interpret the apparently singular UV behaviour of four-dimensional Nernst branes as a

dynamical decompactification limit, which tells us that the description as a four-dimensional

24See Appendices D and E for reasons why.
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system breaks down and has to be replaced by a five-dimensional one.

The five-dimensional solution admits a non-trivial extremal limit, where the boost parameter

is sent to infinity, while the momentum (density) is kept fixed. The resulting extremal near

horizon geometry should define a field theory with entropy-temperature relation S ∼ T 1/3.

In the context of boosted D-branes and M-branes, the proposed interpretation is a conformal

field theory in the infinite momentum frame, which carries a finite momentum density [17].

Moreover, it was proposed in [23,47,48,57] that the compactification of the direction along the

boost corresponds to discrete light cone quantisation. In this respect it is interesting to look

at the asymptotic scaling symmetries of the five- and four-dimensional extremal solutions near

the horizon. In five dimensions the metric looks like a Lifshitz metric with z = 3 and θ = 0,

except that the direction along the boost has weight −1 instead of +1. Upon reduction to four

dimensions, the asymptotic geometry, and if we go to infinite chemical potential even the global

geometry, is a hyperscaling violating Lifshitz geometry with z = 3 and θ = 1 [11]. That is,

by reduction over the boost direction one trades the non-trivial scaling of this direction for an

overall scaling of the metric. Following [23,47,48,57] we propose to associate a four- and a three-

dimensional field theory to the near-horizon five- and four-dimensional geometries, respectively,

with the three-dimensional theory encoding the zero mode sector of the discrete light cone

quantisation of the four-dimensional theory. Both theories are non-relativistic with Lifshitz

exponent z = 3, and supersymmtric with two supercharges.25 The four-dimensional theory is

scale invariant and arises by deforming a four-dimensional relativistic N = 1 supersymmetric

theory by a finite momentum density, while the three-dimensional theory is scale covariant.

5.2 The fate of the third law

From a strictly gravitational point of view, one should still worry about the pp curvature singu-

larities which persist in the extremal limit irrespective of whether we consider four-dimensional

or five-dimensional Nernst branes. While sometimes considered to be ‘mild,’ they are gen-

uine curvature singularities which make the solution geodesically incomplete. Moreover, they

are not cured by stringy α′-corrections [16], and strings probing pp singularities get infinitely

excited [15]. While at finite temperature there is technically no singularity, near extremality

objects falling towards the event horizon will still experience very large tidal forces [59]. This

behaviour is, if not an inconsistency, at least a sign that the singularity has physical relevance.

Moreover, the pp singularity is clearly caused by the way the metric complies with the strong

version of Nernst’s law, namely through a warp factor which scales any finite piece of the world

volume26 to zero volume. It is not obvious at all how pp singularities could be removed while

keeping the strong version of Nernst’s law. For small BPS black holes, R2-corrections remove

25According to the analysis of [58], extremal four-dimensional Nernst branes are BPS.
26Here ‘finite’ refers to the Euclidean metric defined by the coordinates x, y, z, which we use to refer extensive

quantities to ‘unit world volume.’
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null curvature singularities, by making the area finite [60]. But as these singularities are of the

sp type, it is not clear what this implies for pp singularities. One example where a pp singularity

is removed is the D6 brane of type IIA supergravity, using an M-theory embedding [61]. The

effect of higher curvature corrections on pp type singularities has been investigated in [62, 63].

One can also approach the problem from the field theory side. For example, in [64] they study

the infinite momentum frame CFT dual to a boosted brane and find evidence that the CFT re-

solves the geometric singularity. In our case it would be interesting to understand the dual four-,

or possibly, the three-dimensional IR field theory, and to investigate whether it is non-singular,

and whether its ground state is unique or degenerate. And if the ground state is unique, one

would need to understand whether this means that (i) pp-singularities are acceptable, (ii) they

are not, but the dual field theory can be used to construct a ‘quantum geometry’ of some sort,

(iii) or if there is some kind of breakdown of gauge/gravity duality in the extremal limit. Points

(i) and (iii) are not necessarily mutually exclusive, since one might invoke the process version

of the third law to assure that the extremal limit cannot be reached by any physical process.

5.3 Constructing solutions

This paper is part of a series of papers where explicit, non-extremal solutions of five- and

four-dimensional ungauged and gauged supergravity have been constructed using time-like di-

mensional reduction in combination with special geometry [39,42,45]. As explained in Section

2, solutions correspond to curves on a particular submanifold of the para-quaternionic Kähler

manifold obtained by reduction to three dimensions, which satisfy the geodesic equation de-

formed by a potential. As part of the solution we have obtained an explicit expression for a

stationary point of the five-dimensional scalar potential, corresponding to an AdS5 vacuum,

for an arbitrary number of vector multiplets and general FI-gauging. While we initially obtain

solutions to the full second order field equations, with the corresponding number of integration

constants, we have seen that once we impose regularity of the lifted five-dimensional solution

at the horizon27 the number of intergration constants is reduced by one half, so that the solu-

tion satisfies a unique set of first order equations. Such behaviour has been observed before,

and been interpreted as a remnant of the attractor mechanism [45].28 For our five-dimensional

solutions the scalars are constant, so that the only sense in which we have attractor behaviour

is that the scalars sit at a stationary point of the scalar potential. However, from the four-

and three-dimensional perspective we have scalar fields which need to exhibit a particular,

fine-tuned, asymptotic behaviour at the horizon in order to make the five-dimensional solution

regular. This is very similar to attractor behaviour, and the effect of reducing the number

of integration constants by one half is the same. Such universal features of scalar dynamics

deserve further study.

27This is done in the generic situation, that is in particular for finite temperature.
28A related idea seems to be that of ‘hot attractors’ [65].
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In the present paper we have made a very particular choice of the ansatz, which was tailored

to obtaining the five-dimensional lift of the four-dimensional Nernst branes of [11]. In the future

we will study systematically other choices, which will lead to other and more general solutions.

Already in [11] a four-dimensional magnetic solution was found, and we expect that it is possible

to obtain dyonic solutions as well. It would also be interesting to revisit the issue of embeddings

into ten- and eleven-dimensional supergravity.
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A Rewriting the scalar potential

Our goal in this appendix is to obtain a workable expression for the scalar potential V3 appearing

in (2.9). Let us concentrate on the term (cyyy)(cy)−1|ij . This is to be interpreted as the matrix

inverse to (cyyy)−1(cy)ij in the sense that

(cyyy)(cy)−1|ij (cy)jk
cyyy

= δik. (A.1)

Now, using the expression (2.12) for ĝij(y):

ĝij(y) =
3

2

(
(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)
,

we have

δik = (cyyy)(cy)−1|ij
[

2

3
ĝjk(y) +

3

2

(cyy)j(cyy)k
(cyyy)2

]
. (A.2)

We now introduce the dual scalars yi via

∂µyi := ĝij(y)∂µy
j , yi =

3

4

(cyy)i
cyyy

= −ĝij(y)yj .

Hence, (A.2) becomes

δik = (cyyy)(cy)−1|ij
[

2

3
ĝjk(y) +

8

3
yjyk

]
. (A.3)
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In other words, the quantity (cyyy)(cy)−1|ij is just the inverse of the term in square brackets

in (A.3). Thankfully, the latter is easily invertible. Indeed, we find

3

2

[
ĝij(y) + 2yiyj

]
· 2

3
[ĝjk(y) + 4yjyk] = δik .

Hence we can rewrite

(cyyy)(cy)−1|ij =
3

2
ĝij(y) + 3yiyj , (A.4)

so that the scalar potential term in (2.9) becomes

V3 = 3
[
ĝij(y) + 4yiyj

]
gigj . (A.5)

B Quasi-local computation of conserved charges

We use the form of our five-dimensional line element given in (3.41), which can be rewritten as

ds2 =
l2dr2

r2W
+
r2

l2

(
ηµν +

r4
+

r4
uµuν

)
dxµdxν , (B.1)

where uµ = (ut, 0, 0, uz). Note that uµu
µ = −1 so we can interpret this as a velocity vector.

Following the procedure of [54] we want to calculate the quasilocal stress tensor Tµν associated

with the metric (B.1).

B.1 The quasilocal stress tensor

Given a timelike surface ∂Mr at constant radial distance r we define the metric γµν on ∂Mr

via the ADM-like decomposition

ds2 = N2dr2 + γµν(dxµ +Nµdr)(dxν +Nνdr). (B.2)

We define the extrinsic curvature Θµν via

Θµν := −1

2
(∇µn̂ν +∇ν n̂µ) , (B.3)

where n̂µ is the outward-pointing normal vector to the surface ∂Mr. For solutions asymptoting

to AdS5 the procedure of [54] tells us that the quasilocal stress tensor is then given by29

Tµν = Θµν(γ)−Θ(γ)γµν −
3

l
γµν −

l

2
Gµν(γ), (B.4)

where Θ = γµνΘµν is the trace of the extrinsic curvature, and Gµν is the Einstein tensor for

γµν .

29We remind the reader that in this paper we work in units where 8πG = 1.
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For the case at hand we see that the metric (B.1) decomposes according to (B.2) with

N2 =
l2

r2W
, Nµ = 0, γµν(r) =

r2

l2

(
ηµν +

r4
+

r4
uµuν

)
. (B.5)

The unit normal vector n̂µ to a surface of constant r is given by

n̂µ =
r

l
W 1/2(r)δµ,r,

from which we find the extrinsic curvature

Θµν = − r

2l

(
1−

r4
+

r4

)1/2

∂rγµν = −r
2

l3

(
1−

r4
+

r4

)1/2(
ηµν −

r4
+

r4
uµuν

)
. (B.6)

In order to calculate the trace of this we need an expression for the inverse metric γµν , which

is given by

γµν =
l2

r2

[
ηµν −

r4
+

r4

(
1−

r4
+

r4

)−1

uµuν

]
, (B.7)

where uµ = ηµνuν , etc. This can be used to compute the trace of the extrinsic curvature

Θ = Θµνγ
µν = −2

l

(
1−

r4
+

r4

)1/2
[

2 +
r4
+

r4

(
1−

r4
+

r4

)−1
]
. (B.8)

Putting all this together, and noting that Gµν(γ) = 0, we can use (B.4) to find the resulting

gravitational stress-energy tensor induced on the boundary ∂Mr,

Tµν =
r4
+

2l3r2
(ηµν + 4uµuν) + . . . , (B.9)

where the dots represent terms which are subleading in the limit r →∞.

B.2 Mass, momentum and conserved charges

The quasilocal stress tensor (B.9) can be used to compute well-defined mass and other conserved

charges for the spacetime (B.1). Let Σ be a spacelike hypersurface in ∂M = limr→∞ ∂Mr and

make the ADM decomposition

γµνdx
µdxν = −N2

Σdt
2 + σab(dx

a +Na
Σdt)(dx

b +N b
Σdt), (B.10)

where {xa} are coordinates spanning Σ, which has metric σab. Let Uµ be the timelike unit

normal to Σ. Then for any isometry of γµν , which we take to be generated by a Killing vector

ξ, we can define a conserved charge Qξ by

Qξ =

ˆ
Σ

dd−1x
√
σ (UµTµνξ

ν) . (B.11)
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In particular, the mass of the solution is given by taking ξ = ∂t, whilst the momentum in the

direction xa is given by taking ξ = ∂a.

For the boosted black brane we can make the ADM decomposition (B.10) of the metric

(B.5) with

σxx = σyy =
r2

l2
, σzz =

r2

l2

(
1 +

r4
+

r4
u2
z

)
,

Nz
Σ =

r4
+

r4
uzut

(
1 +

r4
+

r4
u2
z

)−1

,

N2
Σ =

r8
+

l2r6
u2
zu

2
t

(
1 +

r4
+

r4
u2
z

)−1

+
r2

l2

(
1−

r4
+

r4
u2
t

)
.

The timelike unit normal to Σ has components

U t = − l
r

(
1 +

r4
+

r4
u2
z

)1/2(
1−

r4
+

r4

)−1/2

,

Uz =
lr4

+

r5
utuz

(
1 +

r4
+

r4
u2
z

)−1/2(
1−

r4
+

r4

)−1/2

.

Using these expressions, as well as the components of the quasilocal stress tensor (B.9), we

can calculate the mass and linear momentum associated with the boosted black brane (B.1).

Taking ξ = ∂t and ξ = ∂z we obtain the expressions (3.56) and (3.57) for the mass and linear

momentum respectively.

Finally, let us add some further comments on the fact that r+, and hence temperature,

is a physical parameter despite that it can be absorbed by rescaling coordinates in (3.41).

From (B.11), (3.53), (3.58) it is manifest that all quantities entering into the first law are

geometric quantities (norms of vectors fields, and integrals of functions over submanifolds using

the induced metric) which are independent of the choice of coordinates. Applying the coordinate

transformation R = r+r, T̃ = t/r+, X = x/r+, Y = y/r+, Z = z/r+ to these expressions, it is

straightforward to see that the parameter r+ is not eleminated, but scaled out as an overall

prefactor. In particular

∂t = r+∂T , ∂z = r+∂Z ,

while

V3 =

ˆ
Σ

dxdydz = r3
+

ˆ
Σ

dXdY dZ

so that irrespective of our choice of coordinates T ∼ r+, S ∼ r3
+, M ∼ r4

+ and Pz ∼ r4
+. It

is precisely this r+-dependence of the thermodynamic quantities that gives rise to the correct

temperature/entropy term in the first law. Put differently, when working in the rescaled coor-

dinates (T̃ , R,X, Y, Z) the parameter r+ is hidden in the choice of the vector field ξ and the

volume V3.
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C Euclideanisation of the boosted black brane

As is well known from the study of Kerr black holes, obtaining the Hawking temperature by

Euclidean methods is much more subtle for non-static spacetimes. For this reason, we find it

useful to give an explicit demonstration of how this works in the case of boosted (non-static)

black branes. The treatment of the linear case given below will be parallel to the analysis of

the Kerr black hole in [49].

A Euclidean continuation of the boosted black brane solution (3.41) can be obtained by

setting t = iτ and uz = iβ, and taking τ and β to be real. Observe that following the standard

treatment of the Kerr solution, we do not only continue time but also the ‘boost parameter’

w = −uz/ut, which is analogous to the angular momentum parameter of the Kerr solution in

Boyer-Lindquist coordinates.

The Euclidean section of the boosted black brane in (3.41) is then

ds2
(5)E =

l2

r2

dr2

W
+
r2

l2
W (ut dτ + βdz)2 +

r2

l2
(
(−β dτ + ut dz)

2 + dx2 + dy2
)
.

We now explore the near horizon geometry by adapting a similar calculation used to examine

the Kerr-Newman solution in [66]. Introducing the new radial variable R by R2 = r − r+, the

function W has the expansion

W =
4

r+
R2 + · · · ,

around the horizon. Expanding up to order R2, the metric takes the form

ds2
(5)E,NH =

l2

r+

(
1− R2

r+

)
dR2 +

4r+

l2
R2dχ2 +

r2
+ + 2r+R

2

l2
(dz̃2 + dx2 + dy2) ,

where we have replaced the coordinates τ and z by the new coordinates

χ = utτ + βz , z̃ = utz − βτ .

We remark that, in contradistinction to the Kerr-Newman solution discussed in [66], (i) the

coordinate z̃ is linear rather than angular, i.e. we do not need to impose an identification on

it; and (ii) the coordinate χ is well defined, since ut and β are constant, so that utdτ + βdz is

exact. The horizon is at R = 0. The coordinates x, y, z̃ parametrize a three-dimensional plane

with a metric which is flat up to corrections of order R2. This part of the metric is clearly

regular for R→ 0. The variables R and χ parametrize a surface with metric

ds2
Cone =

l2

r+

([
1− R2

r+

]
dR2 + 4R2 r

2
+

l4
dχ2

)
,

which is, up to a subleading term of order R2, the metric of a cone with apex at R = 0. Thus χ

is an angular variable and the surface parametrized by R and χ is topologically a disk. Imposing
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the absence of a conical singularity at R = 0 fixes the periodicity of χ to be

χ ' χ+ 2π
l2

2r+
.

Since the coordinate z̃ is linear (has no identifications) we can determine the periodicities of τ

and z from

(χ, z̃) '
(
χ+ 2π

l2

2r+
, z̃

)
⇔ (τ, z) ' (τ +A, z +B) ,

with

A = 2π ut
l2

2r+
, B = 2π β

l2

2r+
.

The Hawking temperature T is read off from the periodicity of τ by τ ' τ + T−1, so that

πT =
r+

l2ut
,

which agrees with the result found by computing the surface gravity (3.54).

To interpret the periodicity of z, remember that the boost velocity at the horizon is

w = −uz
ut

= −i β
ut

.

Thus

B = iw
1

T
,

so that the identifications take the form

(τ, z) '
(
τ + T−1, z + iwT−1

)
,

which is analogous to the identification for the Euclidean Kerr solution, see for example [66].

D Five-dimensional tidal forces

In this appendix we shall construct the frame fields describing the PPON associated to an

observer freely falling towards the five-dimensional extremal black brane in (3.47). The frame-

dragging effects associated to the brane’s boost in the z direction mean that an observer who

starts falling radially inward from infinity will acquire a velocity in the z direction. We want to

pick our first frame field to be the vector field generating the geodesic motion of the observer.

To do this, we follow the procedure of [15,16,67] and introduce the frame field

(ê0)
µ

=

(
d

dτ

)µ
= ṫ (∂t)

µ
+ ż (∂z)

µ
+ ṙ (∂r)

µ
, (D.1)

where τ is the proper time of our observer or, equivalently, the affine parameter for the geodesic

motion, and a dot denotes differentiation with respect to τ . Note that for simplicity we consider
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an observer who is not moving in the x and y directions.

It is clear that to obtain ê0, we must first obtain ṫ, ż and ṙ. To do this, we recall that

associated to each of the Killing vector fields ∂t, ∂z, ∂x, ∂y of (3.47) there is an integral of

motion. These conserved quantities are the energy and momenta,

E = −gtµẋµ =

(
r2

l2
− ∆

r2l2

)
ṫ− ∆

r2l2
ż , (D.2)

pz = gzµẋ
µ =

(
r2

l2
+

∆

r2l2

)
ż +

∆

r2l2
ṫ , (D.3)

px = gxµẋ
µ =

r2

l2
ẋ = 0 , (D.4)

py = gyµẋ
µ =

r2

l2
ẏ = 0 . (D.5)

Defining the quantities

α :=
r2

l2
+

∆

r2l2
, β :=

r2

l2
− ∆

r2l2
, γ :=

∆

r2l2
,

we can simultaneously solve (D.2) and (D.3) to find

ṫ =
l4

r4
(αE + γpz) , (D.6)

ż =
l4

r4
(βpz − γE) . (D.7)

Notice that both of these velocities diverge as we approach the horizon at r+ = 0. This

divergence tells us that this particular coordinate system is not valid beyond the horizon.

However, for our current purposes, this is not a problem as we are only interested in tidal forces

close to, but outside, the horizon. In order to write down ê0, we still need to obtain ṙ. For this

we use that gµν ẋ
µẋν = −1 for a timelike observer, which is equivalent to

ṙ = −
√
−r

2

l2
+
l2A

r2
(E − V+) (E − V−) , (D.8)

where we’ve taken the negative root to represent a radially infalling observer and V± =

1
α

(
−γpz ± r2pz

l2

)
are the roots of αE2 + 2γEpz − βp2

z = 0. Notice that had we instead picked

the positive root in (D.8), describing an outgoing timelike geodesic, ṙ will become complex for

sufficiently large r; this indicates that geodesic cannot reach the boundary but in fact hits a

turning point and returns to the bulk [68–70]. For this reason, we will only be interested in

near horizon tidal forces.

We can now substitute the above expressions for ṫ, ż, ṙ into (D.1) to obtain the following

expression for the first frame field

(ê0)
µ

=
l4

r4
(αE + γpz) (∂t)

µ
+
l4

r4
(βpz − γE) (∂z)

µ −
√
−r

2

l2
+ α

l2

r2
(E − V+) (E − V−) (∂r)

µ
.

(D.9)
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Component Near horizon behaviour

R̃0101 const

R̃0102 r−13

R̃0112 r−13

R̃0202 r−13

R̃0212 r−13

R̃0i0j δijr
−6

R̃0i1j δijr
−6

R̃0i2j δijr
−6

R̃1212 r−13

R̃1i1j δijr
−6

R̃1i2j δijr
−6

R̃2i2j δijr
−6

R̃ijkl r−3 (δilδjk − δikδjl)

Table 3: Near horizon scaling behaviour of the non-zero components of the five-dimensional
Riemann tensor, R̃abcd, as measured in the PPON.

Whilst the frame field ê0 correctly describes the parallel propagation, it is not correctly nor-

malised. To form an orthonormal basis of frame fields we can apply Gram-Schmidt procedure

to the set of linearly independent frame fields êa = {ê0, ê1 = ∂r, ê2 = ∂z, êi = ∂i} where i = x, y.

This was done using Maple and returns a basis of frame fields that we shall denote {ea} without

the hat. These still correctly characterise the parallel propagation but at the same time are

fully orthonormal in the sense that they satisfy gµν (ea)
µ

(eb)
ν

= ηab.

The full expressions for the individual frame fields {ea} are quite complicated and not

especially illuminating so we omit them here. However, we can then use the frame fields as

transformation matrices to obtain the components of the Riemann tensor as measured in the

PPON via

R̃abcd = Rµνρσ (ea)
µ

(eb)
ν

(ec)
ρ

(ed)
σ
. (D.10)

The non-zero components of the PPON Riemann tensor are again rather complicated and so

rather than provide full expressions, we instead list their scaling behaviour in the near horizon

regime in Table 3.

E Four-dimensional tidal forces

To investigate the tidal forces present for the four-dimensional extremal Nernst brane solutions

of [11] we must treat the cases with finite and infinite four-dimensional chemical potential

separately as we have done throughout the paper. These have metrics given in (4.3) and (4.19)

respectively. We shall proceed in a similar fashion to Appendix D except for the assumption

that the infalling observer is now moving only in the radial direction and has no transverse
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momentum in either the x or y directions. This is slightly different to the analysis of [16] and

means the tangent vector for the timelike geodesic on which our radially infalling observer is

travelling is given by

Tµ =
(
ṫ, ṙ,~0

)
,

where dot denotes differentiation with respect to the observer’s proper time, τ .

E.1 A > 0 tidal forces

The extremal version of (4.3) is given by

ds2
A>0, Ext =

r

l

(
− r2

l2
(
1 + ∆

Ar4

)1/2 dt2 +
l2
(
1 + ∆

Ar4

)1/2
r2

dr2 +
r2

l2

(
1 +

∆

Ar4

)1/2 (
dx2 + dy2

))
.

(E.1)

The energy is again an integral of motion:

E = −gttṫ =
r3

l3
(
1 + ∆

Ar4

)1/2 ṫ ⇒ ṫ =
l3E

(
1 + ∆

Ar4

)1/2
r3

.

For a timelike geodesic we have

gµνT
µT ν = −1 ⇒ ṙ = − 1

l1/2r

√
l3E2 − r3(

1 + ∆
Ar4

)1/2 ,
where we pick the negative square root to represent an observer falling radially inwards. We

could equally well pick the positive root and consider an outgoing geodesic but ṙ will become

complex for large r, meaning the geodesic encounters a turning point and is reflected back into

the bulk. This is reminiscent of the situation in Appendix D and in fact, this inability of timelike

geodesics to reach the boundary is an example of a property that hyperscaling-violating Lifshitz

spacetimes can inherit from their parent Anti de-Sitter spacetimes. All of this means that we

need only focus on the ingoing observer and near horizon tidal forces. Another similarity with

Appendix D is the divergence of ṫ and ṙ as r → 0; again this indicates the coordinates are only

valid up the horizon which is absolutely fine for the analysis of tidal forces.

Next we align the frame field30 e0 with the vector field d
dτ responsible for generating the

integral curve along which the observer is moving:

(e0)µ =

(
d

dτ

)µ
= ṫ∂µt + ṙ∂µr

=
l3E

(
1 + ∆

Ar4

)1/2
r3

∂µt −
1

l1/2r

√
l3E2 − r3(

1 + ∆
Ar4

)1/2 ∂µr .
The observer is moving in the (t, r) directions and so there are two frame fields associated to

this: e0 and e1. Since the observer isn’t moving in any of the xi (i ≥ 2) directions, the frames

30We use unhatted frame fields in four-dimensions to distinguish from their hatted cousins in five-dimensions.
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Component Near horizon behaviour

R̃0101 r

R̃0i0j δijr
−4

R̃0i1j δijr
−4

R̃1i1j δijr
−4

R̃ijkl r (δilδjk − δikδjl)

Table 4: Near horizon scaling behaviour of the non-zero components of the four-dimensional
A > 0 Riemann tensor, R̃abcd, as measured in the PPON.

ei for i ≥ 2 are just given by the square roots of the inverse metric components i.e.

(ei)
µ =

l

r
(
1 + ∆

Ar4

)1/4 ∂µi .
It remains to find the frame e1 such that the {ea} form a PPON. We have picked e0 to describe

the parallel propagation and so we just need a second frame field, e1, that is orthonormal to

both e0 and ei, i ≥ 2. It follows from simple linear algebra that

(e1)µ = −
l3/2

(
1 + ∆

Ar4

)1/2
r3

√
l3E2 − r3(

1 + ∆
Ar4

)1/2 ∂µt +
lE

r
∂µr .

It is interesting to note that in the case of the static four-dimensional metric, the frame fields are

already orthonormal whereas in Appendix D, where the five-dimensional metric is non-static,

this is not the case and we had to perform an additional Gram-Schmidt procedure at this point.

We next use Maple to find the components of the Riemann tensor in a coordinate basis with

lowered indices, Rµνρσ, and then multiply by frame fields to obtain the local tidal forces felt

by the observer as in (D.10). We again omit the full expressions and instead list in Table 4 the

scaling behaviour of the non-zero components in the near horizon regime

E.2 A = 0 tidal forces

Here we repeat the same procedure as above for the A = 0 extremal metric. The extremal

version of (4.19) is given by

ds2
A=0, Ext = − r5

∆1/2l3
dt2 +

∆1/2l

r3
dr2 +

∆1/2r

l3
(
dx2 + dy2

)
. (E.2)

The resulting nonzero components of the Riemann tensor as measured in the PPON are given

in Table 5.

E.3 Consistency with existing classification

The near horizon scaling behaviours of the PPON Riemann tensor components in Tables 4

and 5 agree. This is consistent with the fact that the parameter A only affects the asymptotic
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Component Near horizon behaviour

R̃0101 r

R̃0i0j δijr
−4

R̃0i1j δijr
−4

R̃1i1j δijr
−4

R̃ijkl r3 (δilδjk − δikδjl)

Table 5: Near horizon scaling behaviour of the non-zero components of the four-dimensional
A = 0 Riemann tensor, R̃abcd, as measured in the PPON.

geometry, which is why the metrics (E.1) and (E.2) both take the same form in the small r

limit: specifically, a hyperscaling-violating Lifshitz metric with parameters (z, θ) = (3, 1) as

observed in [11].

It is worthwhile to check the consistency of the results of this appendix with the complete

classification of hyperscaling-violating Lifshitz singularities obtained in [16]. It can be shown

that our (z, θ) = (3, 1) geometry is equivalent to a (n0, n1) = (10, 4) geometry in their notation.

This would place our near horizon metric into Class IV of the analysis in [16], making it both

consistent with the Null Energy Condition and indicative of a null curvature singularity (infinite

tidal forces) at r = 0.

F Normalization of the vector potential

For the four-dimensional chemical potential µ ∼ At(r =∞), to be uniquely defined, it is crucial

that the vector potential is normalized such that At(r+) = 0. While this is widely used and

the reason well known, see for example [2, 44], we would like to review the full argument here

for completeness.

Assume that we are given a static space-time which has a Killing horizon with Killing vector

field ξ. If the norm of ξ has a simple zero at the horizon, in other words, if the solution is non-

extremal, then the space-time can be continued analytically to a space-time which contains a

bifurcate horizon [43]. This means that the horizon has a spatial section Σ0 where the Killing

vector field ξ vanishes. If A is a well-defined one-form on this space-time, then A(ξ) = 0 on Σ0.

Since the horizon is generated by the flow of the Killing vector field ξ, and if assuming that the

one-form A is invariant under ξ, LξA = 0 (where Lξ denotes the Lie derivative), it follows that

A(ξ) = 0 on the whole horizon. Outside the horizon we can define a time coordinate t, such

that ξ = ∂t. Then the horizon limit of the component At of the one-form is At → A(ξ) = 0.

In our application, we have non-extremal solutions with Killing horizons, generated by ξ,

given by ξ = ∂t outside the horizon. Moreover not only the metric but also the vector field is

assumed static (invariant under t), and therefore At has to vanish on the horizon. By continuity

this continues to hold in the extremal limit.
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