605 research outputs found

    Active privacy-utility trade-off against inference in time-series data sharing

    Get PDF
    Internet of things devices have become highly popular thanks to the services they offer. However, they also raise privacy concerns since they share fine-grained time-series user data with untrusted third parties. We model the users personal information as the secret variable, to be kept private from an honest-but-curious service provider, and the useful variable, to be disclosed for utility. We consider an active learning framework, where one out of a finite set of measurement mechanisms is chosen at each time step, each revealing some information about the underlying secret and useful variables, albeit with different statistics. The measurements are taken such that the correct value of useful variable can be detected quickly, while the confidence on the secret variable remains below a predefined level. For privacy measure, we consider both the probability of correctly detecting the secret variable value and the mutual information between the secret and released data. We formulate both problems as partially observable Markov decision processes, and numerically solve by advantage actor-critic deep reinforcement learning. We evaluate the privacy-utility trade-off of the proposed policies on both the synthetic and real-world time-series datasets

    Lower limb stiffness estimation during running: the effect of using kinematic constraints in muscle force optimization algorithms

    Get PDF
    The focus of this paper is on the effect of muscle force optimization algorithms on the human lower limb stiffness estimation. By using a forward dynamic neuromusculoskeletal model coupled with a muscle short-range stiffness model we computed the human joint stiffness of the lower limb during running. The joint stiffness values are calculated using two different muscle force optimization procedures, namely: Toque-based and Torque/Kinematic-based algorithm. A comparison between the processed EMG signal and the corresponding estimated muscle forces with the two optimization algorithms is provided. We found that the two stiffness estimates are strongly influenced by the adopted algorithm. We observed different magnitude and timing of both the estimated muscle forces and joint stiffness time profile with respect to each gait phase, as function of the optimization algorithm used

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Get PDF
    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems

    Diagnostic and therapeutic radioisotopes in nuclear medicine: Determination of gamma-ray transmission factors and safety competencies of high-dense and transparent glassy shields

    Full text link
    We present the findings of an extensive examination on newly designed CdO-rich and transparent glass shields for nuclear medicine facilities in lieu of traditional and unfavorable materials, such as lead and concrete. Gamma-ray transmission factors of newly designed glass shields are determined using a variety of diagnostic, therapeutic, and research radioisotopes, including 67Ga, 57Co, 111In, 201Tl, 99mTc, 51Cr, 131I, 58Co, 137Cs, 133Ba, and 60Co. A general-purpose Monte Carlo code MCNPX (version 2.7.0) is used to determine the attenuation parameters of different material thicknesses. Next, the findings are compared using a standard concrete shielding material. The results indicate that adding more CdO to the glass composition improves the overall gamma-ray attenuation properties. As a result, among the heavy and transparent glasses developed, the C40 sample containing 40% CdO exhibited the best gamma-ray absorption properties against all radioisotopes. Furthermore, the gamma-ray absorption characteristics of this created high-density glass were shown to be better to those of a standard and heavy concrete sample. It can be concluded that the newly developed CdO-rich and transparent glass sample may be used in medical radiation fields where the radioisotopes examined are used in daily clinical and research applications. © 2022 De Gruyter. All rights reserved.Princess Nourah Bint Abdulrahman University, PNU: PNURSP2022R149Funding information: This study was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149)

    Tribological performance of novel Nickel-based composite coatings with lubricant particles

    Get PDF
    Abstract The present study is focused on the evaluation of the tribological performance of novel Ni/hBN and Ni/WS2 composite coatings electrodeposited from an additive-free Watts bath with the assistance of ultrasound. Lubricated and non-lubricated scratch tests were performed on both novel composite coatings and on standard Ni deposits used as a benchmark coating to have an initial idea of the effect of the presence of particles within the Ni matrix. Under lubricated conditions, the performance of the Ni/hBN composite coating was very similar to the benchmark Ni coating, whereas the Ni/WS2 behaved quite differently, as the latter did not only show a lower coefficient of friction, but also prevented the occurrence of stick-slip motion that was clearly observed in the other coatings. Under non-lubricated conditions, whereas the tribological performance of the Ni/hBN composite coating was again very similar to that of the benchmark Ni coating, the Ni/WS2 composite coatings again showed a remarkable enhancement, as the incorporation of the WS2 particles into the Ni coating not only resulted in a lower coefficient of friction, but also in the prevention of coating failure
    corecore