8,109 research outputs found
Discrete Lie Advection of Differential Forms
In this paper, we present a numerical technique for performing Lie advection
of arbitrary differential forms. Leveraging advances in high-resolution finite
volume methods for scalar hyperbolic conservation laws, we first discretize the
interior product (also called contraction) through integrals over Eulerian
approximations of extrusions. This, along with Cartan's homotopy formula and a
discrete exterior derivative, can then be used to derive a discrete Lie
derivative. The usefulness of this operator is demonstrated through the
numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC
Recommended from our members
Developing theory-informed interventions to implement evidence into practice: a systematic approach using the Theoretical Domains Framework
Background: There is little systematic operational guidance about how best to develop complex interventions to reduce the gap between practice and evidence. This article is one in a series of articles documenting the development and use of the Theoretical Domains Framework (TDF) to advance the science of implementation research.
Methods: The intervention was developed considering three main components: theory, evidence, and practical issues. We used a four-step approach, consisting of guiding questions, to direct the choice of the most appropriate components of an implementation intervention: Who needs to do what, differently? Using a theoretical framework, which barriers and enablers need to be addressed? Which intervention components (behaviour change techniques and mode(s) of delivery) could overcome the modifiable barriers and enhance the enablers? And how can behaviour change be measured and understood?
Results: A complex implementation intervention was designed that aimed to improve acute low back pain management in primary care. We used the TDF to identify the barriers and enablers to the uptake of evidence into practice and to guide the choice of intervention components. These components were then combined into a cohesive intervention. The intervention was delivered via two facilitated interactive small group workshops. We also produced a DVD to distribute to all participants in the intervention group. We chose outcome measures in order to assess the mediating mechanisms of behaviour change.
Conclusions: We have illustrated a four-step systematic method for developing an intervention designed to change clinical practice based on a theoretical framework. The method of development provides a systematic framework that could be used by others developing complex implementation interventions. While this framework should be iteratively adjusted and refined to suit other contexts and settings, we believe that the four-step process should be maintained as the primary framework to guide researchers through a comprehensive intervention development process
Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption
For a solar flare occurring on 2010 November 3, we present observations using
several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope
followed by inflows sweeping into a current sheet region. The inflows are soon
followed by outflows appearing to originate from near the termination point of
the inflowing motion - an observation in line with standard magnetic
reconnection models. We measure average inflow plane-of-sky speeds to range
from ~150-690 km/s with the initial, high-temperature inflows being the
fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the
Alfvenic Mach number which appears to decrease with time. We also provide
inflow and outflow times with respect to RHESSI count rates and find that the
fast, high-temperature inflows occur simultaneously with a peak in the RHESSI
thermal lightcurve. Five candidate inflow-outflow pairs are identified with no
more than a minute delay between detections. The inflow speeds of these pairs
are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s -
indicating acceleration during the reconnection process. The fastest of these
outflows are in the form of apparently traveling density enhancements along the
legs of the loops rather than the loop apexes themselves. These flows could
either be accelerated plasma, shocks, or waves prompted by reconnection. The
measurements presented here show an order of magnitude difference between the
retraction speeds of the loops and the speed of the density enhancements within
the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication
~July 2012
Prognosis of hyponatremia in elderly patients with fragility fractures
Funding This work is supported by an NHS Research Scotland (NRS) Career Research Fellowship to Dr Soiza.Peer reviewedPublisher PD
Reconstructing the Local Twist of Coronal Magnetic Fields and the Three-Dimensional Shape of the Field Lines from Coronal Loops in EUV and X-Ray Images
Non-linear force-free fields are the most general case of force-free fields,
but the hardest to model as well. There are numerous methods of computing such
fields by extrapolating vector magnetograms from the photosphere, but very few
attempts have so far made quantitative use of coronal morphology. We present a
method to make such quantitative use of X-Ray and EUV images of coronal loops.
Each individual loop is fit to a field line of a linear force-free field,
allowing the estimation of the field line's twist, three-dimensional geometry
and the field strength along it.
We assess the validity of such a reconstruction since the actual corona is
probably not a linear force-free field and that the superposition of linear
force-free fields is generally not itself a force-free field. To do so, we
perform a series of tests on non-linear force-free fields, described in Low &
Lou (1990). For model loops we project field lines onto the photosphere. We
compare several results of the method with the original field, in particular
the three-dimensional loop shapes, local twist (coronal alpha), distribution of
twist in the model photosphere and strength of the magnetic field. We find
that, (i) for these trial fields, the method reconstructs twist with mean
absolute deviation of at most 15% of the range of photospheric twist, (ii) that
heights of the loops are reconstructed with mean absolute deviation of at most
5% of the range of trial heights and (iii) that the magnitude of non-potential
contribution to photospheric field is reconstructed with mean absolute
deviation of at most 10% of the maximal value.Comment: submitted to Ap
Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions
This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again
- …