12,729 research outputs found

    The IT performance evaluation in the construction industry

    Get PDF
    To date there has been limited published work in the construction management and engineering literature that has provided empirical evidence to demonstrate that IT can improve organizational performance. Without an explicit understanding about how IT can be effectively used to improve organizational performance, its justification will remain to be weak for managers. To ensure the continuous increase in IT based applications in the construction industry, sufficient evidence has to be provided for management in various professions of the construction industry to evaluate, allocate and utilize appropriate IT systems. In an attempt to explore the relationship between IT and productivity, an empirical investigation of 60 Professional Consulting Firms (PCF) from the Hong Kong construction industry was undertaken. A model for determining the organizational productivity of IT is proposed, and the methodology used to test the model is described. The findings are analyzed and a cross-profession comparison of the results indicated the differences in the use of IT. The research findings are discussed with similarities being drawn. The limitations of the research are then presented and discussed. The implications of the findings and conclusions then fully presented

    Net energy analysis of solar and conventional domestic hot water systems in Melbourne, Australia

    Full text link
    It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. Very rarely has the life-cycle energy requirements of solar hot water systems been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. The solar systems provided a net energy saving compared to the conventional systems after 0.5 to 2 years, for electricity and gas systems respectively.<br /

    Soft modes near the buckling transition of icosahedral shells

    Full text link
    Icosahedral shells undergo a buckling transition as the ratio of Young's modulus to bending stiffness increases. Strong bending stiffness favors smooth, nearly spherical shapes, while weak bending stiffness leads to a sharply faceted icosahedral shape. Based on the phonon spectrum of a simplified mass-and-spring model of the shell, we interpret the transition from smooth to faceted as a soft-mode transition. In contrast to the case of a disclinated planar network where the transition is sharply defined, the mean curvature of the sphere smooths the transitition. We define elastic susceptibilities as the response to forces applied at vertices, edges and faces of an icosahedron. At the soft-mode transition the vertex susceptibility is the largest, but as the shell becomes more faceted the edge and face susceptibilities greatly exceed the vertex susceptibility. Limiting behaviors of the susceptibilities are analyzed and related to the ridge-scaling behavior of elastic sheets. Our results apply to virus capsids, liposomes with crystalline order and other shell-like structures with icosahedral symmetry.Comment: 28 pages, 6 figure

    Developing a frame of reference for ex-ante IT/IS investment evaluation

    Get PDF

    Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources

    Get PDF
    White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares

    Instantons, supersymmetric vacua, and emergent geometries

    Full text link
    We study instanton solutions and superpotentials for the large number of vacua of the plane-wave matrix model and a 2+1 dimensional Super Yang-Mills theory on R×S2R\times S^2 with sixteen supercharges. We get the superpotential in the weak coupling limit from the gauge theory description. We study the gravity description of these instantons. Perturbatively with respect to a background, they are Euclidean branes wrapping cycles in the dual gravity background. Moreover, the superpotential can be given by the energy of the electric charge system characterizing each vacuum. These charges are interpreted as the eigenvalues of matrices from a reduction for the 1/8 BPS sector of the gauge theories. We also discuss qualitatively the emergence of the extra spatial dimensions appeared on the gravity side.Comment: 29 pages, 3 figures, latex. v2: references added, comments added. v3: accepted version in PR

    Elastic Instability Triggered Pattern Formation

    Get PDF
    Recent experiments have exploited elastic instabilities in membranes to create complex patterns. However, the rational design of such structures poses many challenges, as they are products of nonlinear elastic behavior. We pose a simple model for determining the orientational order of such patterns using only linear elasticity theory which correctly predicts the outcomes of several experiments. Each element of the pattern is modeled by a "dislocation dipole" located at a point on a lattice, which then interacts elastically with all other dipoles in the system. We explicitly consider a membrane with a square lattice of circular holes under uniform compression and examine the changes in morphology as it is allowed to relax in a specified direction.Comment: 15 pages, 7 figures, the full catastroph

    Gauging Nonlinear Supersymmetry

    Get PDF
    Coset methods are used to construct the action describing the dynamics associated with the spontaneous breaking of the local supersymmetries. The resulting action is an invariant form of the Einstein-Hilbert action, which in addition to the gravitational vierbein, also includes a massive gravitino field. Invariant interactions with matter and gauge fields are also constructed. The effective Lagrangian describing processes involving the emission or absorption of a single light gravitino is analyzed.Comment: 20 pages, no figure

    Rim curvature anomaly in thin conical sheets revisited

    Full text link
    This paper revisits one of the puzzling behaviors in a developable cone (d-cone), the shape obtained by pushing a thin sheet into a circular container of radius R R by a distance η \eta [E. Cerda, S. Chaieb, F. Melo, and L. Mahadevan, {\sl Nature} {\bf 401}, 46 (1999)]. The mean curvature was reported to vanish at the rim where the d-cone is supported [T. Liang and T. A. Witten, {\sl Phys. Rev. E} {\bf 73}, 046604 (2006)]. We investigate the ratio of the two principal curvatures versus sheet thickness hh over a wider dynamic range than was used previously, holding R R and η \eta fixed. Instead of tending towards 1 as suggested by previous work, the ratio scales as (h/R)1/3(h/R)^{1/3}. Thus the mean curvature does not vanish for very thin sheets as previously claimed. Moreover, we find that the normalized rim profile of radial curvature in a d-cone is identical to that in a "c-cone" which is made by pushing a regular cone into a circular container. In both c-cones and d-cones, the ratio of the principal curvatures at the rim scales as (R/h)5/2F/(YR2) (R/h)^{5/2}F/(YR^{2}) , where F F is the pushing force and Y Y is the Young's modulus. Scaling arguments and analytical solutions confirm the numerical results.Comment: 25 pages, 12 figures. Added references. Corrected typos. Results unchange
    corecore