Recent experiments have exploited elastic instabilities in membranes to
create complex patterns. However, the rational design of such structures poses
many challenges, as they are products of nonlinear elastic behavior. We pose a
simple model for determining the orientational order of such patterns using
only linear elasticity theory which correctly predicts the outcomes of several
experiments. Each element of the pattern is modeled by a "dislocation dipole"
located at a point on a lattice, which then interacts elastically with all
other dipoles in the system. We explicitly consider a membrane with a square
lattice of circular holes under uniform compression and examine the changes in
morphology as it is allowed to relax in a specified direction.Comment: 15 pages, 7 figures, the full catastroph