16,484 research outputs found
A phenomenological model of the superconducting state of the Bechgaard salts
We present a group theoretical analysis of the superconducting state of the
Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are
eight symmetry distinct superconducting states. Of these only the (fully
gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the
full range of the experiments on the Bechgaard salts. The gap of the polar
state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is
translationally invariant.Comment: 4 pages, no figure
Triple redundant hydrogen sensor with in situ calibration
To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented
Critical exponents and phase transition in gold nuclei fragmentation at energies 10.6 and 4.0 GeV/nucleon
An attempt to extract critical exponents gamma, beta and tau from data on
gold nuclei fragmentation due to interactions with nuclear emulsion at energies
4.0 A GeV and 10.6 A GeV is presented. Based on analysis of Campi's 2nd charge
moments, two subsets of data at each energy are selected from the inclusive
data, corresponding to 'liquid' and 'gas' phases. The extracted values of
critical exponents from the selected data sets are in agreement with
predictions of 'liquid-gas' model of phase transition.Comment: 21 pages, 15 figure
Direct contributions of dry forests to nutrition: a review
Globally, micronutrient deficiencies are more prevalent than calorie and protein deficiencies. In order to address global micronutrient deficiencies, increasing attention is being paid to the nutritional quality of peopleâs diets. While conventional agriculture is key for ensuring adequate calories, dietary quality depends on the consumption of a diverse range of micronutrient rich foods. Many wild foods are rich in micronutrients, particularly fruits, vegetables, and animal source food. As a result there has been increasing interest in the value of wild foods to meeting nutritional requirements.
We review literature on the consumption of wild foods in dry forest areas to assess the current state of knowledge as to how dry forests may contribute to nutrition. We focus on papers that quantify consumption of wild forest foods. Although there is a great deal of literature that lends weight to the notion that dry forests are important for food security and nutrition, we find surprisingly little evidence of direct contributions to diets. Of 2514 articles identified by our search, only four quantify the consumption of wild foods from dry forests, and only one of these puts this consumption in the context of the entire diet. There is a need for research on the nutritional importance of dry forest foods which combines methodologies from nutrition science with an understanding and appreciation of the ecological, social, cultural and economic context
Domain Wall Spin Dynamics in Kagome Antiferromagnets
We report magnetization and neutron scattering measurements down to 60 mK on
a new family of Fe based kagome antiferromagnets, in which a strong local spin
anisotropy combined with a low exchange path network connectivity lead to
domain walls intersecting the kagome planes through strings of free spins.
These produce unfamiliar slow spin dynamics in the ordered phase, evolving from
exchange-released spin-flips towards a cooperative behavior on decreasing the
temperature, probably due to the onset of long-range dipolar interaction. A
domain structure of independent magnetic grains is obtained that could be
generic to other frustrated magnets.Comment: 5 pages, 4 figure
Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis
Small RNAs and a diverse array of protein partners control gene expression in eukaryotes through a variety of mechanisms. By combining siRNA affinity chromatography and mass spectrometry, we have identified the double-stranded RNA-binding domain protein Blanks to be an siRNA- and dsRNA-binding protein from Drosophila S2 cells. We find that Blanks is a nuclear factor that contributes to the efficiency of RNAi. Biochemical fractionation of a Blanks-containing complex shows that the Blanks complex is unlike previously described RNA-induced silencing complexes and associates with the DEAD-box helicase RM62, a protein previously implicated in RNA silencing. In flies, Blanks is highly expressed in testes tissues and is necessary for postmeiotic spermiogenesis, but loss of Blanks is not accompanied by detectable transposon derepression. Instead, genes related to innate immunity pathways are up-regulated in blanks mutant testes. These results reveal Blanks to be a unique component of a nuclear siRNA/dsRNA-binding complex that contributes to essential RNA silencing-related pathways in the male germ line
The declining representativeness of the British party system, and why it matters
In a recent article, Michael Laver has explained âWhy Vote-Seeking Parties May Make Voters Miserableâ. His model shows that, while ideological convergence may boost congruence between governments and the median voter, it can reduce congruence between the party system and the electorate as a whole. Specifically, convergence can increase the mean distance between voters and their nearest party. In this article we show that this captures the reality of todayâs British party system. Policy scale placements in British Election Studies from 1987 to 2010 confirm that the pronounced convergence during the past decade has left the Conservatives and Labour closer together than would be optimal in terms of minimising the policy distance between the average voter and the nearest major party. We go on to demonstrate that this comes at a cost. Respondents who perceive themselves as further away from one of the major parties in the system tend to score lower on satisfaction with democracy. In short, vote-seeking parties have left the British party system less representative of the ideological diversity in the electorate, and thus made at least some British voters miserable
Statistical mechanics of glass transition in lattice molecule models
Lattice molecule models are proposed in order to study statistical mechanics
of glass transition in finite dimensions. Molecules in the models are
represented by hard Wang tiles and their density is controlled by a chemical
potential. An infinite series of irregular ground states are constructed
theoretically. By defining a glass order parameter as a collection of the
overlap with each ground state, a thermodynamic transition to a glass phase is
found in a stratified Wang tiles model on a cubic lattice.Comment: 18 pages, 8 figure
Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors
We investigate the combined effect of Hund's and spin-orbit (SO) coupling on
superconductivity in multi-orbital systems. Hund's interaction leads to
orbital-singlet spin-triplet superconductivity, where the Cooper pair wave
function is antisymmetric under the exchange of two orbitals. We identify three
d-vectors describing even-parity orbital-singlet spin-triplet pairings among
t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each
other. SO coupling further assists pair formation, pins the orientation of the
d-vector triad, and induces spin-singlet pairings with a relative phase
difference of \pi/2. In the band basis the pseudospin d-vectors are aligned
along the z-axis and correspond to momentum-dependent inter- and intra-band
pairings. We discuss quasiparticle dispersion, magnetic response, collective
modes, and experimental consequences in light of the superconductor Sr2RuO4.Comment: 6 pages, 5 figure
Strong electronic correlations in superconducting organic charge transfer salts
We review the role of strong electronic correlations in
quasi--two-dimensional organic charge transfer salts such as (BEDT-TTF),
(BETS) and -[Pd(dmit)]. We begin by defining minimal
models for these materials. It is necessary to identify two classes of
material: the first class is strongly dimerised and is described by a
half-filled Hubbard model; the second class is not strongly dimerised and is
described by a quarter filled extended Hubbard model. We argue that these
models capture the essential physics of these materials. We explore the phase
diagram of the half-filled quasi--two-dimensional organic charge transfer
salts, focusing on the metallic and superconducting phases. We review work
showing that the metallic phase, which has both Fermi liquid and `bad metal'
regimes, is described both quantitatively and qualitatively by dynamical mean
field theory (DMFT). The phenomenology of the superconducting state is still a
matter of contention. We critically review the experimental situation, focusing
on the key experimental results that may distinguish between rival theories of
superconductivity, particularly probes of the pairing symmetry and measurements
of the superfluid stiffness. We then discuss some strongly correlated theories
of superconductivity, in particular, the resonating valence bond (RVB) theory
of superconductivity. We conclude by discussing some of the major challenges
currently facing the field.Comment: A review: 52 pages; 10 fig
- âŠ