433 research outputs found

    Systematic innovation and the underlying principles behind TRIZ and TOC

    Get PDF
    Innovative developments in the design of product and manufacturing systems are often marked by simplicity, at least in retrospect, that has previously been shrouded by restrictive mental models or limited knowledge transfer. These innovative developments are often associated with the breaking of long established trade-off compromises, as in the paradigm shift associated with JIT & TQM, or the resolution of design contradictions, as in the case of the dual cyclone vacuum cleaner. The rate of change in technology and the commercial environment suggests the opportunity for innovative developments is accelerating, but what systematic support is there to guide this innovation process. This paper brings together two parallel, but independent theories on inventive problem solving; one in mechanical engineering, namely the Russian Theory of Inventive Problem Solving (TRIZ) and the other originating in manufacturing management as the Theory of Constraints (TOC). The term systematic innovation is used to describe the use of common underlying principles within these two approaches. The paper focuses on the significance of trade-off contradictions to innovation in these two fields and explores their relationship with manufacturing strategy development

    The impact of the CATCH early childhood program on young children’s physical activity, nutrition, and food behaviour

    Get PDF
    Initially funded in 1988, the CATCH (Coordinated Approach To Child Health) program is a school-based health promotion and childhood obesity prevention program. It was designed to improve physical activity (PA) and healthy food choices in school-aged children. The program has since expanded to include the CATCH Early Childhood (CEC) program, developed for preschool-aged children (ages 3-5 years). The CEC program incorporates preschool-based enhanced PA, nutrition, family educational components, and staff learning materials in a health promotion program aimed at young children. The program is one of the few interventions that includes nutrition, PA, and family/staff components targeting young children (e.g. < 5 years). This thesis evaluated the impact of CEC programming on young children’s nutrition behaviours, food knowledge, and PA levels before and after implementation of the CEC program. Registered Early Childhood Educators (RECEs) were trained and implemented the program for 6-months. Our results demonstrated some significant findings relevant to preschooler program development, but do not directly support the implementation of the CEC program specifically. This study adds to the current body of literature around early intervention programs within daycare settings, but further research is needed to quantify whether all components of the CEC program can positively impact health outcomes (e.g. nutritional choices and PA behaviours) among this cohort.Master of Human Kinetics (MHK

    Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950&ndash;2011): radar remote-sensing and numerical modeling data analysis

    Get PDF
    Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (&alpha; = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, &alpha; = 0.01) during the 1991–2011 period and by 21–38 cm (&alpha; = 0.001) from 1950 to 2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ~24 days consequent to later freeze-up dates by 5.9 days (&alpha; = 0.1) and earlier break-up dates by 17.7–18.6 days (&alpha; = 0.001)

    Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015

    Get PDF
    A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage  ≥  90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations (R) with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002–2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p  \u3c  0.05) regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies

    Ultrafast light-controlled optical-fiber modulator

    Get PDF
    We report the ultrafast operation of a light-controlled optical-fiber modulator, driven by subpicosecond, compressed, and amplified (6000 A) dye laser pulses, controlling frequency doubled (5320 A) yttrium aluminum garnet laser pulses. The operation of the modulator is based on the optical Kerr effect, and its main component is 7 mm of single-mode optical fiber. Using this system as a light-controlled shutter, we produced either 0.4 ps green light pulses or 0.5 ps holes on the much longer duration second harmonic pulses.Peer reviewedElectrical and Computer Engineerin

    Indicators of ocean health and human health: developing a research and monitoring framework

    Get PDF
    This is the final version of the article. Available from NIEHS via the DOI in this record.We need to critically assess the present quality of the marine ecosystem, especially the connection between ecosystem change and threats to human health. In this article we review the current state of indicators to link changes in marine organisms with eventual effects to human health, identify research opportunities in the use of indicators of ocean and human health, and discuss how to establish collaborations between national and international governmental and private sector groups. We present a synthesis of the present state of understanding of the connection between ocean health and human health, a discussion of areas where resources are required, and a discussion of critical research needs and a template for future work in this field. To understand fully the interactions between ocean health and human health, programs should be organized around a "models-based" approach focusing on critical themes and attributes of marine environmental and public health risks. Given the extent and complex nature of ocean and human health issues, a program networking across geographic and disciplinary boundaries is essential. The overall goal of this approach would be the early detection of potential marine-based contaminants, the protection of marine ecosystems, the prevention of associated human illness, and by implication, the development of products to enhance human well-being. The tight connection between research and monitoring is essential to develop such an indicator-based effort.This work was funded by the National Institute of Environmental Health Sciences, the Intergovernmental Oceanographic Commission (UNESCO), and the Bermuda Biological Station for Research, Inc. (contribution 1615)

    A Discrete Event Simulation model to evaluate the treatment pathways of patients with Cataract in the United Kingdom

    Get PDF
    Background The number of people affected by cataract in the United Kingdom (UK) is growing rapidly due to ageing population. As the only way to treat cataract is through surgery, there is a high demand for this type of surgery and figures indicate that it is the most performed type of surgery in the UK. The National Health Service (NHS), which provides free of charge care in the UK, is under huge financial pressure due to budget austerity in the last decade. As the number of people affected by the disease is expected to grow significantly in coming years, the aim of this study is to evaluate whether the introduction of new processes and medical technologies will enable cataract services to cope with the demand within the NHS funding constraints. Methods We developed a Discrete Event Simulation model representing the cataract services pathways at Leicester Royal Infirmary Hospital. The model was inputted with data from national and local sources as well as from a surgery demand forecasting model developed in the study. The model was verified and validated with the participation of the cataract services clinical and management teams. Results Four scenarios involving increased number of surgeries per half-day surgery theatre slot were simulated. Results indicate that the total number of surgeries per year could be increased by 40% at no extra cost. However, the rate of improvement decreases for increased number of surgeries per half-day surgery theatre slot due to a higher number of cancelled surgeries. Productivity is expected to improve as the total number of doctors and nurses hours will increase by 5 and 12% respectively. However, non-human resources such as pre-surgery rooms and post-surgery recovery chairs are under-utilized across all scenarios. Conclusions Using new processes and medical technologies for cataract surgery is a promising way to deal with the expected higher demand especially as this could be achieved with limited impact on costs. Non-human resources capacity need to be evenly levelled across the surgery pathway to improve their utilisation. The performance of cataract services could be improved by better communication with and proactive management of patients.Peer reviewedFinal Published versio
    • …
    corecore