363 research outputs found

    Optical conductivity of the Frohlich polaron

    Full text link
    We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and non-perturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong coupling regime is ``washed out''by large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.Comment: 4 pages, 6 ps-figure

    Interface superconductivity in LaAlO3_{3}-SrTiO3_{3} heterostructures

    Full text link
    The interface superconductivity in LaAlO3_{3}-SrTiO3_{3} heterostructures reveals a non-monotonic behavior of the critical temperature as a function of the two-dimensional density of charge carriers. We develop a theoretical description of interface superconductivity in strongly polar heterostructures, based on the dielectric function formalism. The density dependence of the critical temperature is calculated accounting for all phonon branches including different types of optical (interface and half-space) and acoustic phonons. The LO- and acoustic-phonon-mediated electron-electron interaction is shown to be the dominating mechanism governing the superconducting phase transition in the heterostructure.Comment: 7 pages, 2 figures, accepted in Physical Review

    Microscopic mechanisms for the Fermi-liquid behavior of Nb-doped strontium titanate

    Full text link
    The relaxation rate in Nb-doped strontium titanate involving different scattering channels is investigated theoretically. It is demonstrated that the total relaxation rate in SrTiO_{3} is provided mainly by two mechanisms. The Baber electron-electron scattering with participation of both Coulomb and phonon-mediated electron-electron interactions provides the T^{2}-dependence of the relaxation rate. The scattering on the potential landscape caused by impurities is responsible for the residual relaxation rate at low temperatures. A good agreement with experiment is achieved accounting for all phonon branches in strontium titanate, both the optical and acoustic phonons. It is shown that the effective electron-electron interaction can be attractive in strontium titanate, and provides superconductivity at low temperatures and Fermi-liquid response in a wide range of temperatures. Thus our microscopic model supports the notion that superconductivity and Fermi-liquid properties of n-type SrTiO_{3} have a common origin.Comment: 22 pages, 6 figures, 1 tabl

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime

    Nucleation of superconductivity in mesoscopic star-shaped superconductors

    Full text link
    We study the phase transition of a star-shaped superconductor, which covers smoothly the range from zero to two dimensions with respect to the superconducting coherence length. Detailed measurements and numerical calculations show that the nucleation of superconductivity in this device is very inhomogeneous, resulting in rich structure in the superconducting transition as a function of temperature and magnetic field. The superconducting order parameter is strongly enhanced and mostly robust in regions close to multiple boundaries.Comment: 4 pages, 5 figures, E-mail addresses: [email protected] (V. Chandrasekhar), [email protected] (J. T. Devreese

    Optical Absorption of an Interacting Many-Polaron Gas

    Full text link
    The optical absorption of a many (continuum) polaron gas is derived in the framework of a variational approach at zero temperature and weak or intermediate electron-phonon coupling strength. We derive a compact formula for the optical conductivity of the many-polaron system taking into account many-body effects in the electron or hole system. Within the method presented here, these effects are contained completely in the dynamical structure factor of the electron or hole system. This allows to build on well-established studies of the interacting electron gas. Based on this approach a novel feature in the absorption spectrum of the many-polaron gas, related to the emission of a plasmon together with a phonon, is identified. As an application and illustration of the technique, we compare the theoretical many-polaron optical absorption spectrum as derived in the present work with the `d-band' absorption feature in Nd2_{2}CuO2_{2}. Similarities are shown between the theoretically and the experimentally derived first frequency moment of the optical absorption of a family of differently doped Nd2x_{2-x}Cex_{x}CuO4y_{4-y} materials.Comment: 24 pages, 5 figures; revised and expanded versio

    On the validity of the Franck-Condon principle in the optical spectroscopy: optical conductivity of the Fr\"{o}hlich polaron

    Get PDF
    The optical absorption of the Fr\"{o}hlich polaron model is obtained by an approximation-free Diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: i) a strong coupling expansion, based on the the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (α>10\alpha >10); ii) a Memory Function Formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (α<6\alpha <6) taking the dynamic lattice relaxation into account. In the coupling regime 6<α<106<\alpha<10 the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.Comment: accepted for publication in PR

    Path Integral of the Two Dimensional Su-Schrieffer-Heeger Model

    Full text link
    The equilibrium thermodynamics of the two dimensional Su-Schrieffer-Heeger Model is derived by means of a path integral method which accounts for the variable range of the electronic hopping processes. While the lattice degrees of freedom are classical functions of time and are integrated out exactly, the electron particle paths are treated quantum mechanically. The free energy of the system and its temperature derivatives are computed by summing at any TT over the ensemble of relevant particle paths which mainly contribute to the total partition function. In the low TT regime, the {\it heat capacity over T} ratio shows un upturn peculiar of a glassy like behavior. This feature is more sizeable in the square lattice than in the linear chain as the overall hopping potential contribution to the total action is larger in higher dimensionality.Comment: Phys.Rev.B vol.71 (2005

    Photoemission spectroscopy and sum rules in dilute electron-phonon systems

    Full text link
    A family of exact sum rules for the one-polaron spectral function in the low-density limit is derived. An algorithm to calculate energy moments of arbitrary order of the spectral function is presented. Explicit expressions are given for the first two moments of a model with general electron-phonon interaction, and for the first four moments of the Holstein polaron. The sum rules are linked to experiments on momentum-resolved photoemission spectroscopy. The bare electronic dispersion and the electron-phonon coupling constant can be extracted from the first and second moments of spectrum. The sum rules could serve as constraints in analytical and numerical studies of electron-phonon models.Comment: 4 page
    corecore