39 research outputs found

    Macrovertebrate Paleontology and the Pliocene Habitat of Ardipithecus ramidus

    Get PDF
    International audienceA diverse assemblage of large mammals is spatially and stratigraphically associated with Ardipithecus ramidus at Aramis. The most common species are tragelaphine antelope and colobine monkeys. Analyses of their postcranial remains situate them in a closed habitat. Assessment of dental mesowear, microwear, and stable isotopes from these and a wider range of abundant associated larger mammals indicates that the local habitat at Aramis was predominantly woodland. The Ar. ramidus enamel isotope values indicate a minimal C4 vegetation component in its diet (plants using the C4 photosynthetic pathway), which is consistent with predominantly forest/woodland feeding. Although the Early Pliocene Afar included a range of environments, and the local environment at Aramis and its vicinity ranged from forests to wooded grasslands, the integration of available physical and biological evidence establishes Ar. ramidus as a denizen of the closed habitats along this continuum

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals.

    No full text
    This analysis of all known African larger mammals of the past 10 Myr offers new perspectives on the geographical circumstances of speciation. Our central question is: does the fossil evidence support the idea that most new species start as small populations and, if true, how long is the average growth interval until species are established at their mean later size? This simple question is important to unravelling the competing claims of rival models of speciation. We approached it by direct use of fossil data, which, to our knowledge, has not been done previously. We compared the numbers of fossil site records, as a proxy for magnitude of geographical spread, between survivorship intervals across all species. The results show that the average mammal species has indeed started its life in a relatively small population, and thereafter increased rapidly in geographical spread to reach its long-term equilibrium abundance by about 1 million years after origin. Some theoretical implications of these results are discussed

    Bovid ecomorphology: A cautionary tale from the Omo

    No full text

    New data on enamel thickness in Homo sapiens

    No full text
    corecore