2,340 research outputs found
Evaluation of Raytek infrared pyrometer for continuous propellant temperature measurement
The primary purpose of this evaluation was to determine if the Raytek IR pyrometer that was installed in the 600 gallon propellant mixers could be used to provide a continuous, accurate, reliable measurement of the propellant temperature during mixing. The Raytek infrared sensor is not recommended to be used for controlling propellant temperature nor for inspection buy-off. The first part of the evaluation was to determine the accuracy of the sensor in measuring the propellant temperature. The second part was to determine the reliability of the air purge design in preventing contamination of the IR window
Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtraâ„¢.
Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtraâ„¢. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions
Analysis of AIS Data of the Recluse Oil Field, Recluse, Wyoming
Airborne Imaging Spectrometer (AIS) data were flown over the Recluse, Wyoming oil field on September 9, 1984. Processing software was developed at Earth Satellite Corporation (EarthSat) for interactive analysis of the AIS data. EarthSat's AIS processing capabilities include destriping, solar irradiance corrections, residual calculations, geometric resampling, equal energy normalization, interactive spectral classifications and a variety of compressive algorithms to reduce the data to 8-bit format with a minimum of information loss. The in-house photolab facilities of EarthSat can routinely produce high-quality color renditions of the enhanced AIS data. A total of 80 lithologic samples were collected under the AIS flight lines. Correlation (within the atmospheric windows) between the laboratory and the AIS spectra of sample sites was generally poor. Reasonable correlation was only possible in large, freshly plowed fields. Mixed pixels and contrast between the natural and sample's surfaces were believed responsible for the poor correlation. Finally, a drift of approximately three channels was observed in the diffraction grating position within the 1.8 to 2.1 micron quadrant
Novel Spin and Statistical Properties of Nonabelian Vortices
We study the statistics of vortices which appear in (2+1)--dimensional
spontaneously broken gauge theories, where a compact group G breaks to a finite
nonabelian subgroup H. Two simple models are presented. In the first, a quantum
state which is symmetric under the interchange of a pair of indistinguishable
vortices can be transformed into an antisymmetric state after the passage
through the system of a third vortex with an appropriate -flux element.
Further, there exist states containing two indistinguishable spinless vortices
which obey Fermi statistics. These results generalize to loops of nonabelian
cosmic string in 3+1 dimensions. In the second model, fractional analogues of
the above behaviors occur. Also, composites of vortices in this theory may
possess fractional ``Cheshire spin'' which can be changed by passing an
additional vortex through the system.Comment: 11 pages, UICHEP-TH/92-15; FERMILAB-PUB-92/233-T; SLAC-PUB-588
Geologic exploration: The contribution of LANDSAT-4 thematic mapper data
The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined
Implications of information from LANDSAT-4 for private industry
The broader spectral coverage and higher resolution of LANDSAT-4 Thematic Mapper (TM) data open the door for identification from space of spectral phenomena associated with mineralization and microseepage of hydrocarbon. Digitally enhanced image products generated from TM data allow the mapping of many major and minor structural features that mark or influence emplacement of mineralization and accumulation of hydrocarbons. These improvements in capabilities over multispectral scanner data should accelerate the acceptance and integration of satellite data as a routinely used exploration tool that allows rapid examination of large areas in considerable detail. Imagery of Southern Ontario, Canada as well as of Cement, Oklahoma and Death Valley, California is discussed
Contribution of LANDSAT-4 thematic mapper data to geologic exploration
The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas
Observation of generalized synchronization of chaos in a driven chaotic system
We report on the experimental observation of the generalized synchronization of chaos in a real physical system. We show that under a nonlinear resonant interaction, the chaotic dynamics of a single mode laser can become functionally related to that of a chaotic driving signal and furthermore as the coupling strength is further increased, the chaotic dynamics of the laser approaches that of the driving signal.Tang, D. Dykstra, R. ; Hamilton, M. ; Heckenberg, N
Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE
As more businesses and users adopt cloud computing services, security
vulnerabilities will be increasingly found and exploited. There are many
technological and political challenges where investigation of potentially
criminal incidents in the cloud are concerned. Security experts, however, must
still be able to acquire and analyze data in a methodical, rigorous and
forensically sound manner. This work applies the STRIDE asset-based risk
assessment method to cloud computing infrastructure for the purpose of
identifying and assessing an organization's ability to respond to and
investigate breaches in cloud computing environments. An extension to the
STRIDE risk assessment model is proposed to help organizations quickly respond
to incidents while ensuring acquisition and integrity of the largest amount of
digital evidence possible. Further, the proposed model allows organizations to
assess the needs and capacity of their incident responders before an incident
occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on
Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp.
223-236, 201
Exact Path Integrals by Equivariant Cohomology
It is a common belief among field theorists that path integrals can be
computed exactly only in a limited number of special cases, and that most of
these cases are already known. However recent developments, which generalize
the WKBJ method using equivariant cohomology, appear to contradict this folk
wisdom. At the formal level, equivariant localization would seem to allow exact
computation of phase space path integrals for an arbitrary partition function!
To see how, and if, these methods really work in practice, we have applied them
in explicit quantum mechanics examples. We show that the path integral for the
1-d hydrogen atom, which is not WKBJ exact, is localizable and computable using
the more general formalism. We find however considerable ambiguities in this
approach, which we can only partially resolve. In addition, we find a large
class of quantum mechanics examples where the localization procedure breaks
down completely.Comment: LATE
- …