522 research outputs found

    New Enhanced Tunneling in Nuclear Processes

    Get PDF
    The small sub-barrier tunneling probability of nuclear processes can be dramatically enhanced by collision with incident charged particles. Semiclassical methods of theory of complex trajectories have been applied to nuclear tunneling, and conditions for the effects have been obtained. We demonstrate the enhancement of alpha particle decay by incident proton with energy of about 0.25 MeV. We show that the general features of this process are common for other sub-barrier nuclear processes and can be applied to nuclear fission.Comment: RevTex4, 2 figure

    Two-dimensional tunneling in a SQUID

    Full text link
    Traditionally quantum tunneling in a static SQUID is studied on the basis of a classical trajectory in imaginary time under a two-dimensional potential barrier. The trajectory connects a potential well and an outer region crossing their borders in perpendicular directions. In contrast to that main-path mechanism, a wide set of trajectories with components tangent to the border of the well can constitute an alternative mechanism of multi-path tunneling. The phenomenon is essentially non-one-dimensional. Continuously distributed paths under the barrier result in enhancement of tunneling probability. A type of tunneling mechanism (main-path or multi-path) depends on character of a state in the potential well prior to tunneling.Comment: 9 pages, 8 figure

    Vortex liquid crystals in anisotropic type II superconductors

    Full text link
    In a type II superconductor in a moderate magnetic field, the superconductor to normal state transition may be described as a phase transition in which the vortex lattice melts into a liquid. In a biaxial superconductor, or even a uniaxial superconductor with magnetic field oriented perpendicular to the symmetry axis, the vortices acquire elongated cross sections and interactions. Systems of anisotropic, interacting constituents generally exhibit liquid crystalline phases. We examine the possibility of a two step melting in homogeneous type II superconductors with anisotropic superfluid stiffness from a vortex lattice into first a vortex smectic and then a vortex nematic at high temperature and magnetic field. We find that fluctuations of the ordered phase favor an instability to an intermediate smectic-A in the absence of intrinsic pinning

    Negative magnetoresistance and phase slip process in superconducting nanowires

    Full text link
    We argue that the negative magnetoresistance of superconducting nanowires, which was observed in recent experiments, can be explained by the influence of the external magnetic field on the critical current of the phase slip process. We show that the suppression of the order parameter in the bulk superconductors made by an external magnetic field can lead to an enhancement of both the first Ic1I_{c1} and the second Ic2I_{c2} critical currents of the phase slip process in nanowires. Another mechanism of an enhancement of Ic1I_{c1} can come from decreasing the decay length of the charge imbalance λQ\lambda_Q at weak magnetic fields because Ic1I_{c1} is inversely proportional to λQ\lambda_Q. The enhancement of the first critical current leads to a larger intrinsic dissipation of the phase slip process. It suppresses the rate of both the thermo-activated and/or quantum fluctuated phase slips and results in decreasing the fluctuated resistance.Comment: 7 pages, 4 figure

    Dynamics of the superconducting condensate in the presence of a magnetic field. Channelling of vortices in superconducting strips at high currents

    Full text link
    On the basis of the time-dependent Ginzburg-Landau equation we studied the dynamics of the superconducting condensate in a wide two-dimensional sample in the presence of a perpendicular magnetic field and applied current. We could identify two critical currents: the current at which the pure superconducting state becomes unstable (Jc2J_{c2} \cite{self1}) and the current at which the system transits from the resistive state to the superconducting state (Jc1<Jc2J_{c1}<J_{c2}). The current Jc2J_{c2} decreases monotonically with external magnetic field, while Jc1J_{c1} exhibits a maximum at HH^*. For sufficient large magnetic fields the hysteresis disappears and Jc1=Jc2=JcJ_{c1}=J_{c2}=J_c. In this high magnetic field region and for currents close to JcJ_c the voltage appears as a result of the motion of separate vortices. With increasing current the moving vortices form 'channels' with suppressed order parameter along which the vortices can move very fast. This leads to a sharp increase of the voltage. These 'channels' resemble in some respect the phase slip lines which occur at zero magnetic field.Comment: 5 pages, 4 figures, Proceedings of Third European Conference on Vortex Matter in Superconductor

    Practical dispersion relations for strongly coupled plasma fluids

    Get PDF
    Very simple explicit analytical expressions are discussed, which are able to describe the dispersion relations of longitudinal waves in strongly coupled plasma systems such as one-component plasma and weakly screened Yukawa fluids with a very good accuracy. Applications to other systems with soft pairwise interactions are briefly discussed.Comment: 11 pages, 3 figures; Related to arXiv:1711.0615

    Dynamics of 2D pancake vortices in layered superconductors

    Full text link
    The dynamics of 2D pancake vortices in Josephson-coupled superconducting/normal - metal multilayers is considered within the time-dependent Ginzburg-Landau theory. For temperatures close to TcT_{c} a viscous drag force acting on a moving 2D vortex is shown to depend strongly on the conductivity of normal metal layers. For a tilted vortex line consisting of 2D vortices the equation of viscous motion in the presence of a transport current parallel to the layers is obtained. The specific structure of the vortex line core leads to a new dynamic behavior and to substantial deviations from the Bardeen-Stephen theory. The viscosity coefficient is found to depend essentially on the angle γ\gamma between the magnetic field B{\bf B} and the c{\bf c} axis normal to the layers. For field orientations close to the layers the nonlinear effects in the vortex motion appear even for slowly moving vortex lines (when the in-plane transport current is much smaller than the Ginzburg-Landau critical current). In this nonlinear regime the viscosity coefficient depends logarithmically on the vortex velocity VV.Comment: 15 pages, revtex, no figure

    Metastability of (d+n)-dimensional elastic manifolds

    Full text link
    We investigate the depinning of a massive elastic manifold with dd internal dimensions, embedded in a (d+n)(d+n)-dimensional space, and subject to an isotropic pinning potential V(u)=V(u).V({\bf u})=V(|{\bf u}|). The tunneling process is driven by a small external force F.{\bf F}. We find the zero temperature and high temperature instantons and show that for the case 1d61\le d\le 6 the problem exhibits a sharp transition from quantum to classical behavior: At low temperatures T<TcT<T_{c} the Euclidean action is constant up to exponentially small corrections, while for T>Tc,T> T_{c}, SEucl(d,T)/=U(d)/T.{S_{\rm Eucl}(d,T)}/{\hbar} = {U(d)}/{T}. The results are universal and do not depend on the detailed shape of the trapping potential V(u)V({\bf u}). Possible applications of the problem to the depinning of vortices in high-TcT_{c} superconductors and nucleation in dd-dimensional phase transitions are discussed. In addition, we determine the high-temperature asymptotics of the preexponential factor for the (1+1)(1+1)-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte

    Evidence of two-dimensional macroscopic quantum tunneling of a current-biased DC-SQUID

    Get PDF
    The escape probability out of the superconducting state of a hysteretic DC-SQUID has been measured at different values of the applied magnetic flux. At low temperature, the escape current and the width of the probability distribution are temperature independent but they depend on flux. Experimental results do not fit the usual one-dimensional (1D) Macroscopic Quantum Tunneling (MQT) law but are perfectly accounted for by the two-dimensional (2D) MQT behaviour as we propose here. Near zero flux, our data confirms the recent MQT observation in a DC-SQUID \cite{Li02}.Comment: 4 pages, 4 figures Accepted to PR
    corecore