1,253 research outputs found

    Robust image and video coding with pyramid vector quantisation

    Get PDF

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Planning for Decentralized Control of Multiple Robots Under Uncertainty

    Full text link
    We describe a probabilistic framework for synthesizing control policies for general multi-robot systems, given environment and sensor models and a cost function. Decentralized, partially observable Markov decision processes (Dec-POMDPs) are a general model of decision processes where a team of agents must cooperate to optimize some objective (specified by a shared reward or cost function) in the presence of uncertainty, but where communication limitations mean that the agents cannot share their state, so execution must proceed in a decentralized fashion. While Dec-POMDPs are typically intractable to solve for real-world problems, recent research on the use of macro-actions in Dec-POMDPs has significantly increased the size of problem that can be practically solved as a Dec-POMDP. We describe this general model, and show how, in contrast to most existing methods that are specialized to a particular problem class, it can synthesize control policies that use whatever opportunities for coordination are present in the problem, while balancing off uncertainty in outcomes, sensor information, and information about other agents. We use three variations on a warehouse task to show that a single planner of this type can generate cooperative behavior using task allocation, direct communication, and signaling, as appropriate

    Resolved Spectra of the Narrow-Line Region in NGC 1068. III. Physical Conditions in the Emission-Line Gas

    Get PDF
    The physical conditions in the inner narrow line region (NLR) of the Seyfert 2 galaxy NGC 1068 are examined using HST/STIS ultraviolet and optical spectra and photoionization models. 1) The emission-line gas in the blueshifted northeast quadrant is photoionized by the hidden central source out to 100 pc, at which point we find evidence of another source of ionizing radiation, which may be due to fast (1000 km/s) shocks resulting from the interaction of the emission-line knots and the interstellar medium. 2) The gas in the redshifted northeast quadrant is photoionized by continuum radiation that has been heavily absorbed by gas within 30 pc of the central source. We find no strong evidence of the effects of shocks in this component. 3) The redshifted emission-line gas in the southwest quadrant is photoionized by unabsorbed continuum from the central source, similar to that in the inner 100 pc of the blueshifted northeast quadrant. Finally, 4) the emission-line spectrum of the blueshifted southwest quadrant appears to be the superposition of highly ionized, tenuous component within the ionization cone and gas outside the cone, the latter photoionized by scattered continuum radiation. There are several implications of this complicated physical scenario. First, the hidden active nucleus is the dominant source of ionizing radiation in the inner NLR. The absorption of continuum radiation along the line-of-sight to the redshifted northeast quadrant may result from the intersection of the ionization cone and the plane of the host galaxy. Finally, the evidence for shock-induced continuum radiation at the point where the emission-line knots begin to decelerate indicates that the deceleration is due to the interaction of emission-line knots with slower moving gas.Comment: 53 pages, Latex, includes 4 figures (postscript), two additional tables in Latex landscape format, to appear in the Astrophysical Journa

    Probabilistically Safe Avoidance of Dynamic Obstacles with Uncertain Motion Patterns

    Get PDF
    This paper presents a real-time path planning algorithm which can guarantee probabilistic feasibility for autonomous robots subject to process noise and an uncertain environment, including dynamic obstacles with uncertain motion patterns. The key contribution of the work is the integration of a novel method for modeling dynamic obstacles with uncertain future trajectories. The method, denoted as RR-GP, uses a learned motion pattern model of the dynamic obstacles to make long-term predictions of their future paths. This is done by combining the flexibility of Gaussian processes (GP) with the efficiency of RRT-Reach, a sampling-based reachability computation method which ensures dynamic feasibility. This prediction model is then utilized within chance-constrained rapidly-exploring random trees (CC-RRT), which uses chance constraints to explicitly achieve probabilistic constraint satisfaction while maintaining the computational benefits of sampling-based algorithms. With RR-GP embedded in the CC-RRT framework, theoretical guarantees can be demonstrated for linear systems subject to Gaussian uncertainty, though the extension to nonlinear systems is also considered. Simulation results show that the resulting approach can be used in real-time to efficiently and accurately execute safe paths

    S-matrix approach to quantum gases in the unitary limit II: the three-dimensional case

    Full text link
    A new analytic treatment of three-dimensional homogeneous Bose and Fermi gases in the unitary limit of negative infinite scattering length is presented, based on the S-matrix approach to statistical mechanics we recently developed. The unitary limit occurs at a fixed point of the renormalization group with dynamical exponent z=2 where the S-matrix equals -1. For fermions we find T_c /T_F is approximately 0.1. For bosons we present evidence that the gas does not collapse, but rather has a critical point that is a strongly interacting form of Bose-Einstein condensation. This bosonic critical point occurs at n lambda^3 approximately 1.3 where n is the density and lambda the thermal wavelength, which is lower than the ideal gas value of 2.61.Comment: 26 pages, 16 figure

    Effectiveness of mitigation measures to reduce interactions between commercial fishing gear and whales

    Get PDF
    Effectiveness of mitigation measures to reduce interactions between commercial fishing gear and whales. Objectives: 1. Start to collect additional information required to determine the spatial and temporal extent of migrating whales and how this overlaps with commercial fishing gear. 2. Examine the effectiveness of potential gear modifications to the float rigs of fishing pots/traps to reduce their likelihood of entangling whales

    Virial expansion coefficients in the harmonic approximation

    Full text link
    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground state properties at low temperature and the non-interacting large temperature limit of constant virial coefficients. This resembles the smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the second and third virial coefficients as function of dimension, temperature, interaction, and the transition temperature between low and high energy limits.Comment: 11 pages, 7 figures, published versio

    Industrial revolution 4.0: Universiti Malaysia Sabah perspective

    Get PDF
    Industrial Revolution 4.0 or IR 4.0 is getting the attention of Higher Learning Institutions throughout the world. In the case of Universiti Malaysia Sabah (UMS), “transformation towards University/Industry 4.0” has been identified as one of the nine key result areas (KRAs) in the Strategic Plan 2018-2020. The transformation framework focusses on three areas namely Teaching and Learning 4.0, Smart Eco-UMS 4.0 and Research 4.0. Various initiatives have been planned for each area, some of which are currently being implemented. Previously, under the Strategic Plan 2013-2017, UMS gave great attention on developing and promoting UMS as an eco-campus in line with UMS aspiration to be the reference of eco-campus or green campus in the region. This will be further enhanced under Smart EcoUMS 4.0 in line with the United Nation sustainable development goals. One of the related initiatives is Smart Energy. Through the initiatives under the UMS Ecocampus Plan 2013-2017, a total reduction of 44.50 % in energy consumption was recorded between 2014-2017 compared to 2013 and with 29 % reduction in carbon footprint from 2014-2017. The commitment towards an ecocampus has significant impacts on lowering energy usage and reducing carbon footprint. We believe that the smart energy initiative will further contribute to another level of energy saving and carbon footprint reduction towards reducing the impacts of climate change
    • …
    corecore